一半径为R的均匀带电球面,带电量为Q,空间电场强度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:02:06
答:均匀带电球面球外空间电场等效于点电荷在球心处产生的电场.取无限远为零势面,则φ=kQ/r,则r=R处电势为φ=kQ/R.若规定球面上电势值为零,由于球面与无限远的电势差不变,因此φ=-kQ/R,Q
带电量为Q,半径为R.均匀带电球面内外场强及电势分布内部场强E=0球外部等效成球心处一点电荷E=KQ/r^2r>R电势相等球外部等效成球心处一点电荷Φ=KQ/r如果是均匀带电球体,结果与球壳相同
B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=
球内场强为0,电势相等为球壳处电势球外的电场和电势分布和把球上电荷看成集中在圆心的点电荷相同
一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.
不可以,这样等效完全没有道理.直接利用高斯定理,垂直平面作一个封闭的圆柱,马上就算出来了
高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明
ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds
正确的解法应该是完整均匀带电球面的电势(整个球体是等势的)减去ds上的电荷单独存在时在球心处产生的电势——kq/r-k[q(ds/πrr)]/r.你大概是没算kq/r而只算k[q(ds/πrr)]/r
两球面间的电势差为:k(q2/R-q1/r)在大学物理中k用1/(4πε0)表示.
由高斯定理可等效为球心点电荷,因此场强为sigma/4epsilon0,电势为r*sigma/2epsilon0再问:是这个答案再答:没错就是这个
首先用高斯定理并结合球对称性求出空间中的电场强度,然后用电场对路径积分求出电势差:电势0点与P处的电势差为Ep-E0=-积分E.dl
用高斯定理做就可以了.做与球面同心的球面作为高斯面,半径设为2R.由对称性,场强沿高斯面半径方向,高斯面上各点场强的大小处处相等.由高斯定理:E*4π(2R)^2=4πR^2σ/ε0E=σ/4ε0再问
今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势___相等__,根据高斯定理可得球面内电场强度为零,所以球内为等势体,球面为等势面,且它们相等.
整个球面以及内部空间是等势体,电势与一带电量为q的点电荷在距离为r的点产生的电势相等.U=q/(4πεr)具体来说,用积分做,电场强度E=q/(4πεr^2),球表面的电势为E从r到无穷远点对r的积分
这个简单(Q1+Q2)/(4*PI*episilon*R2)再问:你确定不?我也是这么想的、但是有学习好的同学跟我的不一样、她们的好复杂的再答:绝对确定,如果他们复杂,可能是通过电场去积分的,不需要
同学,你的思路不好.这题用Gauss' Law(高斯定理)一步就能解决.如图再问:谢谢高斯定理这个方法明白,但我希望用微积分证明的的方法再答:此题用微积分算到最后是一个超
2(1):球壳内场强为零.球壳外场强E=/4πεR^2.(2)球壳内电势为零.球壳外电势E=/4πεR.3(1):B=((2I/0.5d)-(I/0.5d))μ/2π=μI/πd.(2):x=2d/3
1、(1)球壳内电场为零,外部电场为:E=kQ/(r*r),r为该点到球心的距离.(2)球壳内电势为U=kQ/R.球壳外电势为U=kQ/r.(3)根据(1)(2)的结果绘制.2、无限长导线外一点的磁场