一波源作简谐振动,其振幅为A周期为0.01s,经平衡位置向
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:50:49
用排除法做:周期是2秒,第二次经过-2cm处应该是质点到达最左端后向原点运动的过程中经过的,所以用了不到一个周期,排除D;从最左端到最右端要用1秒,所以肯定比1秒多,排除A和B,故只剩下C.所以答案是
弹簧振子达到最大位移时的弹性很能即为这个系统的总能量.此时E=(kA²/2)当位移为振幅的一半时的弹性势能为kx²/2=1/4×(kA²/2),根据机械能守恒,运动为3/
答案:B再问:能解释吗?谢谢再答:旋转矢量是逆时针方向转动,它端点在x轴的投影点表示简谐振动,它在这个位置时它的投影点x轴正向运动
4A再问:为什么,怎么算再答:作图就可以确定1周期内振子完成一次全振动,通过路程必然是4A再问:怎么做。再答:借用网上的图 这个图上的振子从平衡位置开始完成一次全振动,通过路程将为OA--A
两物体沿同方向,作同频率,同振幅的简谐振动,第一个物体的振动方程为X_1第一个物体的负端点时,φ1=π/2此时第二个物体在A/2,且向正向运动
因为由题意可知:振动方程为:y=4cos(πx-2/3π)而第一次经过x=-2时的时间为:t=0所以第二次经过x=-2时必关于y函数的对称轴对称即:而函数的对称轴为:x=2/3+k(k取整数)(t+t
复合摆问题,平衡位置速度最大.所以平衡位置是小球静止时的位置,此位置合外力=0a=0
因为木块在竖直方向上做简谐运动,依题意木块在最低点时对弹簧的压力最大,在最高点对弹簧的压力最小.在最低点根据牛顿第二定律有FN-mg=ma,代入数据解得a=0.5 g.由最高点和最低点相对平
1/4弹簧振子的总能量E=1/2KA^2=1/2mw^2A^2,A为振幅,当x=1/2A时,动能E'=1/2mv^2=1/2mw^2x^2=1/4E
1.π2.3/2π3.1/3π利用余弦函数图像性质画出余弦函数图像,第一题中就是余弦函数值等于-1,所以初相位为π第二题中就是函数值为0且向正方向运动,所以相位为3/2π.第三题中,函数值为1/2且向
3:1方法1:可以利用势能公式1/2k·2.在位移为振幅一半时,和位移最大时,其势能之比4:1,有能量守恒可以的答案为3:1方法2:可以利用平均力做功1/2v*f*x.
以物块振动最低点为重力势能零点.设振幅为x,则系统的总能量为0.5kx^2当达到振幅一半时,总能量为:Ek+0.5k(0.5x)^2+mg*x/2.由于mgx-0.5kx^2=0,所以Ek+0.5k(
首先说下,周期的单位是秒,别的直接代方程, 代入参数就可以算了
同意楼上答案:势能和位移大小成正比位移现在是1|2,势能为振幅处1|4每点处能量守恒振幅处E1=E总E总=E动+E势1\2处E势=1|4E总则E动=3|4E总∴E动:E势=3:1
设振动轨迹为:y=3sin(ωt+φ)则加速度为:a=y''=-3ω²sin(ωt+φ)由3ω²=27,解得:ω=3从而:T=2π/ω=2π/3
弹簧振子的总能量:最大振幅X时只有弹性势能:1/2kX^2处于X/4处时弹性势能:1/2k(X/4)^2动能=1/2kX^2-1/2k(X/4)^2=15/16(1/2kX^2)15/16
10√3sin(w*t)+A*sin(w*t+a)=20sin(w*t+π/6)A=10cm
根据题意,设该物体在ts时刻的位移为ycm,则∵物体向右运动到距平衡位置最远处时开始计时,振幅为3cm,∴当t=0时,y达到最大值3.因此,设y=3cosωt,∵函数的周期为3s,∴2πω=3,解之得
1.Asin(wt)=0.01*sins(200*pi*t)A是振幅,w是圆频率,可以根据2*pi/T求得,T是周期2.波动方程可以写组Asin(wt-kx)=0.01*sin(200*pi*t-pi