一球心在坐标原点.半径为a的磁化介质球的磁化强度为 , 为常数,求该磁化介质
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:39:39
分别计算A、B、C三点到圆心(即原点)的距离|OA|=根号下(3^2+4^2)=5,在圆上|OB|=根号下(3^2+3^2)=根号185,在圆外
提示:连接OQ,OP;则OP²=OQ²+PQ²=1+PQ²即PQ=√﹙OP²-1﹚当PO取到最小值时PQ有最小值,于是作OC⊥AB于C;AB=√﹙OA
(Q+q)/4πR2(真空介电常量)
看错了,我还以为球壳不带电.下面是修改后的(1)作任意绕金属内部闭合曲线,由于金属等电势,所以不存在电厂E,有高斯定理知此时必然内部金属表面带有等电量负电荷,即内外分别为-q,+(q+Q)q(2)V=
1)P(x,3)其中x的取值范围在1到3之间2)直线OP的方程:3x-4y=0,点A(2,3)到直线OP的距离为6/5,这个距离大于圆A的半径,所以直线OP与圆A的关系是相离.
一个带正电的金属球内的电场强度为零,电势处处相等.从球外沿x轴方向无穷远处,由点电荷电场强度公式可知,电场强度渐渐变小.所以②可以表示场强随r的变化;根据沿电场的方向电势逐渐降低,知电势随x逐渐降低,
把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识
B坐标有两个,分别是(√3,1)或(-√3,1)如下图,∵AO=4,OB=2且OB⊥AB∴∠OAB=30°∵在Rt△OBC中,OB=2,∠BOC=∠BAO=30°∴BC=1,OC=√3,故B(√3,1
设直线AB的斜率为k,则其方程为y=kx+4kx-y+4=0AB为圆的切线,则OB为半径2.|OB|=|k*0-0+4|/√(k²+1)=4/√(k²+1)=2k=±√3AB方程为
依题意,得O(0,0),|OA|=(0+3)2+(0−1)2=4=2,∴R-r=3-1=2=|OA|,∴两圆内切.
y=3sinax=3cosa
2009年山东潍坊的压轴题、
过A做圆的切线,有两条,B点坐标为(2,0)或(-1,√3)顺便说.这图画的A点位置太偏了.在第一象限过点(1,0)做垂线交圆于P点,OP=2,P坐标为(1,√3),A点在OP的延长线上.
解题思路:均匀带电的球体,体外某点的电场强度则可由点电荷的电场强度公式求解,是将带电量的球体看成处于O点的点电荷来处理.解题过程:
很久没碰过高数了,列式应该没问题不知道最后结果会不会错了:微元式为Cr4πr^2·dr其中C为密度比例常数,积分上下限为R,0.最后应该质量为πCR^4
(1),由题可知D(0,1)A(-1,0)C(1,0)设N(1,Y1),M(-1,Y2)代入Y=X可得Y1=1,Y2=-1所以N(1,1).M(-1,-1)所以可求得抛物线的解析式y=-x2+x+1(
上图黄色区域即为所求,面积为 47-6π/12解题思路:先如图取一个满足条件的圆,然后再找临界状况.第一种临界:与三边相切,即三角形内三条蓝色的直线第二种临界:圆只与三角形的一个角相交,有两
勾股定理假设与球面相交的平面是Ax+By+Cz+D=0,球心即原点(0,0,0)到该平面的距离d=|D|/√(A^2+B^2+C^2)球体的半径如果已知为R,则所要求的交线的圆的半径为r=√(d^2+
(1)AB=r,OB=33,OA=r+3,∵OB与圆A相切,∴AB⊥BO,∴∠ABO=90°,在Rt△OAB中,OA2=AB2+OB2,∴(r+3)2=r2+(33)2,∴r=3,∴A(6,0),∴s