三角形abc内接于圆o,p为AB弧上任一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:43:47
三角形ABC内接于圆O,已知圆O的半径为4,SIN A=5/8 求弦长 BC .

经过圆心O做线段AD垂直于BC交圆O于点D交BC于点E连接OB,OC则

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P

连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

在圆O的内接三角形ABC中,AB=AC,D是圆O上一点,AD的延长线交BC的延长线于点P.

1、因为AB=AC,所以角ABC=角ACB角ABD=角ABC-角DBC角P=角ACB-角CAD又角DBC=角CAD所以角ABD=角P又角BAD=角PAB所以三角形ABD相似于三角形APB所以AB/AP

已知,如图.三角形ABc内接于圆o,AB为直径.角CBA的平分线交Ac于点F.,交圆o于点D,DE⊥AB(1):求证,P

(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

几何证明选讲5.如图,三角形ABC是圆O的内接三角形,PA是圆O 的切线,A为切点,PB交AC于点E ,交圆O 于点D

因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=

三角形ABC内接于圆心O,若角A=45度,BC=2求圆的面积

解因为2R=BC/sinA=2/√2/2=2√2所以圆的面积为s=πR²=2π

如图.三角形ABC内接于圆O,P,B,C在一直线上,且PA的平方=PBXPC,求证:PA是圆O的切线

PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则

△ABC是圆O的内接三角形,过A的直线交圆O于P,交BC的延长线于D,AB×AB=AP×AD

(1)证明:如图、连接BP因为:AB×AB=AP×AD  所以:AB/AP=AD/AB在△ABP和△ADB中∠PAB=∠BAD(公共角)AB/AP=AD/AB∴△ABP∽△ADB【

三角形ABC内接于圆O,角B=30度,AC=2,则圆O半径长为?

用正弦定理AC/sin30度=2RR为半径,R=2

如图,三角形abc为圆o的内接三角形,i为三角形abc的内心,ai的延长线交bc于点e,交圆o于点d.①求证:db=d

此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC

已知等边三角形ABC内接于圆O,点P在弧BC上,则角BPC的度数为多少?

连接AP,∠BPA=∠BCA=60度,∠CPA=∠CBA=60度,∠BPC=∠CPA+∠BPA=120度

已知正三角形abc内接于圆o,四边形defg为圆o的内接正方形(d、e在直径上,f、g在圆上的正方形)S三角形abc=a

设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4

如图,三角形ABC内接于圆O,AD平分角BAC,延长BC到P,使PD=PA,求证:D是圆O的切线

延长AO交园边于点K,连接KC并延长交AP于E∵∠B=∠K(两角都是弦AC的圆周角相等)∵∠PDA=∠PAD ( PA=PD已知,等边对等角)且∠CAD=∠DAB (AD

三角形ABC内接于圆O,连结AO并延长交圆O于点E,过点A作AD垂直BC于点D

1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB

三角形ABC内接于圆o,p在圆上,过p点向AB、AC、BC分别作垂线,垂足分别为D、E、F.证明:D、E、F三点共线

证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分别连DE、DF.易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠ACP①,(∵都是∠AB

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B