三角形ABC内接于圆O,且∠ABC=∠C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:33:23
(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
证明:连接BF、CG因为弧BF=弧CG所以弧BG=弧CF,BF=CG所以∠CBF=∠BCG又因为BD=CE所以△BDF≌△CEG(SAS)所以∠BFA=∠CGA所以AB=AC(同圆中,相等的圆周角所对
关于如图,三角形ABC内接于圆O
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).
根号3..再问:就没过程吗再答:
过O作OH⊥BC于H,根据垂径定理得:BH=CH,∵BD=CE,∴BH-BD=CH-CE,即DH=EH,(继续中).再答:延长AD、AE,分别交⊙O于F、G,连BG、FC∵∠1=∠2,BD=CF,∴B
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2
解因为2R=BC/sinA=2/√2/2=2√2所以圆的面积为s=πR²=2π
PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则
从A作圆直径AE,交圆于E,连结BE,〈AEB=〈ACB,(同弧圆周角相等),〈ABC=90度,(半圆上的圆周角是直角),〈ADC=90度,根据勾股定理,AD=4,RT△ABE∽RT△ADC,AB/A
1)(1)连CE,因AE为直径,故AC⊥CE,而AD⊥BC,故∠BCE=∠CAD,又∠BCE=∠EAB(同对弧BE,)故即∠EAB=∠CAD2)(1)因∠ABC=∠AEC,故RT三角形ABD∽AEC,
1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB
直线AD与圆O相切.证明:连接AO并延长交圆O于E,连接CE.AE为直径,则:∠ACE=90°,∠CAE+∠E=90°.∵∠E=∠ABC;∠CAD=∠ABC.∴∠CAD=∠E,故∠CAE+∠CAD=9
第一问很好证.∵∠BCD=∠BAD,∠BCD=∠ACD∴∠BAD=∠ACD又PD圆的切线∴∠PDA=∠ACD∴∠PDA=∠BAD∴DP∥AB
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B