三角形ABC是内接三角形,求证五边形是正五边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:39:37
已知 三角形ABC相似于三角形A1B1C1,三角形A1B1C1全等于三角形A2B2C2.求证 三角形ABC相似于A2B2

这道题是这样的.因为三角形A1B1C1和三角形A2B2C2全等.全等三角形满足:角:A1=A2,B1=B2,C1=C2.边:A1C1=A2C2,A1B1=A2B2,B1C1=B2C2.我们只用关于角的

已知三角形abc,求证三角形abc的三边的垂直平分线交与一点

证明:假设两边的垂直平分线交于一点,那么这点到三个顶点的距离相等,正因为这个点到第三边的两个端点的距离相等,这点必在第三边的垂直平方线上.所以三角形abc的三边的垂直平分线交与一点再答:别客气,请采纳

在三角形ABC中,sinA方+sinB方=sinC方,求证:三角形ABC是直角三角形

由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/2R,sinB=b/2R,sinC=c/2R从而由sin²A=sin²B+sin²C,得a&#

在三角形ABC中,BD垂直AC,CE垂直AB,求证:三角形ADE相似于三角形ABC

证明:因BD⊥AC,CE⊥AB,所以∠ADB=∠AEC=90°,因∠BAD=∠CAE,所以△ABD∽△ACE所以AD/AB=AE/AC又∠A=∠A所以△ADE∽△ABC

在三角形ABC中,BD、CE是高.求证:三角形ADE相似于三角形ABC.

在这里我就不作图了,你自己画个图应该能看懂:证明:∵BDCE是高∴BD⊥ACCE⊥AB∴∠BDA=90°∠CEA=90°又∵∠A=∠A∴∠ABD=∠ACE∴△ABD∽△ACE∴AD/AE=AB/AC即

如图,已知E是AC上一点,三角形ABE全等三角形ADE.求证:三角形ABC全等三角形ADC

因为AB=AC,BD=CE所以AD=AE又角A=角A,AB=AC所以三角形ABE全等于三角形ACD(SAS)

在三角形ABC中,若AD=DB=DC,求证三角形ABC为直角三角形.

再答:回答如果满意的话,请点击右上角的满意回答哦

三角形求证

解题思路:利用三角形全等可求。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

已知三角形ABC,求证三角形ABC是平面图形.

设空间有A,B两点,可以连唯一的一条直线,设还有一点C,可以分别连AC,BC,两条直线AC,BC确定一个平面α,而A,B两点也在平面α上,所以空间任意三点ABC组成的三角形就是平面图形.实际它和“经过

已知三角形ABC,求证三角形内角和等于180度!

已知:三角形ABC中,角A、角B、角C为内角.求证:角A+角B+角C=180度.证明:延长BC到D,过点C作CE//BA,则有:角A=角ACE(两直线平行,内错角相等)角B=角ECD(两直线平行,同位

如图,CD,BE是三角形ABC的两条高,求证三角形AED相似于三角形ABC

证明:∵∠CDA=∠BEA=90°∵∠CAD=∠BAE∴△ABE∽△ACD∴AE:AD=AB:AC∴AE:AB=AD:AC又∵∠EAD=∠BAC∴△ADE∽△ACB

三角形ABC的外心在三角形之外部,求证三角形ABC为钝角三角形

易知外心是三角形外接圆圆心,很容易看出大角所对圆弧大于半圆弧,则大角大于半圆弧所对圆周角90

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

已知三角形ABC全等于三角形A1B1C1,三角形A1B1C1全等于三角形A2B2C2,求证三角形ABC全等于三角形A2B

已知:三角形ABC全等于三角形A1B1C1,则AB=A1B1,BC=B1C1,AC=A1C1另外,三角形A1B1C1全等于三角形A2B2C2,则A2B2=A1B1,B2C2=B1C1,A2C2=A1也

三角形ABC全等于三角形DEF,三角形AOF全等于三角形DOC,求证BO和DA的关系

证三角形AOB全等于三角形BOD(AB=DB,BO=BO,AO=DO)所以AB=BD,角ABO=角DBO(BO平分角ABD)所以BO垂直于AD(等腰三角形三线合一)

三角形ABC

解题思路:同学你好,题写错了吧,请检查原题,在下面说明,我再帮你解答解题过程:.最终答案:略

已知BD,CE为三角形ABC的高,求证:三角形ADE相似于三角形ABC

证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中

求证三角形

解题思路:同学你好,请把图发过来解题过程:图最终答案:略

三角形ABC中三遍abc三角ABC求证pi/3

aA+bB+cC=aπ-aB-aC+bπ-bA-bC+cπ-cA-cB=π(a+b+c)-[A(b+c)+B(a+c)+C(a+b)aA+bB+cC+[A(b+c)+B(a+c)+C(a+b)=π(a