三角形Rt ABC,D是BC的中点求证角CDE=角BDF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:35:38
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
三角形ABC中,D是BC的中点,延长AD至E,使AD=DE,即AE=2AD,连结BE,CE,则四边形ABEC是平行四边形,所以AB+AC=AE故,3AB向量+2BC向量+CA向量=AB+2AB+2BC
证明:∵∠A=∠BCD(均为角B的余角);∠AED=∠CDB=90度.∴⊿AED∽⊿CDB,CD/AE=BC/AD;-----------------------(1)同理相似可证:⊿ADC∽⊿DFB
证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.
∵△ADB≌△EDB≌△EDC,∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°∴∠EDC=60度,∠DEC=90在△
点做BC垂线交BC于E;则有AE=BE=CE;可得:AE²+DE²=AD²BD²=(BE-DE)²=BE²-2BE*DE+DE²C
点D在BC边上,且DC=6,三角形ADC的面积是15,可知,三角形ABC的高为5,角B=45度,所以三角形ABD是等腰直角三角形,BD=两倍的高=10所以ABD的面积为25
∵2S△abc=ab=(a+b+c)R∴R=ab/(a+b+c)∵∠C=90°∴a+b=c∴2ab=(a+b)-(a+b)=(a+b)-c=(a+b+c)(a+b-c)∴ab=(a+b+c)(a+b-
4:1过M点作AC的平行线,与BN交于一点记做Q∵MQ分别是BC和BN的中点∴MQ是△BNC的中位线∴QM:NC=1:2∵AN:NC=2:1在相似三角形△ANP和△QMP中AP:PM=AN:QM=4:
利用面积相等可以求得r.三角形面积一方面等于ab/2,另一方面等于1/2(ar+br+cr)从而有ab/2=1/2(a+b+c)r故r=ab/(a+b+c)
向量3AB+向量2BC+向量CA=向量AB+向量2AC+向量CA=向量AB+向量AC=1/2向量AD欢迎追问~
证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.再问:为什
作三角形ABC外接圆,延长AD交圆于E那么有:角C=角E即:角E+角BAD=90.=〉AE为外接圆直径=〉三角形ABC外心在AE上.(即圆心在BC的垂直平分线上.)又AD是三角形ABC的中线,即:重心
向量AB+向量AC=2向量AD
作AE垂直BC于E,AD的平方-DE的平方=AB的平方-BE的平方=AE的平方移项:AD的平方-AB的平方=DE的平方-BE的平方……(1)DE=DC+CE,又因为此是等腰三角形,所以BE=CE所以(
连AE∵EF=AB/4∴S△ABD=4S△DEF=4(同高)∵D是BC中点∴S△ABC=2S△ABD=8cm²(同高)再问:抱歉,可能我真的没看懂,麻烦详细点,用文字。再答:△ABD的底AB
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
解题思路:延长AD到M,使AD=DM,连接BM,CM,根据平行四边形的判定得到平行四边形ABMC,推出AC=BM,根据三角形的三边关系定理得出AB+BM>AM,代入求出即可.解题过程: