三阶矩阵的特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:41:28
已知三阶矩阵A的特征值为-1,2,3,则(2A) ^(-1)的特征值为?

设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1

线性代数问题,已知三阶矩阵A的特征值为-1,1,,则行列式

已知三阶矩阵A的特征值为-1,1,二分一,则行列式(A的负1次方+2I)的值是?我来给楼主答案:A的特征值为-1,1,1/2;则A^(-1)+2I的特征值为1,3,4;所以A^(-1)+2I的行列式=

已知三阶矩阵A的特征值为-1,1,2,则 B=A^3-2A^2的特征值是?|B|=?

记g(x)=x^3-2x^2因为A的特征值为-1,1,2所以B=g(A)=A^3-2A^2的特征值为g(-1)=-3,g(1)=-1,g(2)=0,所以|B|=(-3)*(-1)*0=0.

线性代数:三阶矩阵A的特征值全为0 则A的秩为

条件得到AX1=0,AX2=0,AX3=0X1,X2,X3为方程AX=0的三个无关解所以秩为0,所以A为三阶的0矩阵再问:为什么x1x2x3是三个无关的解呢?再答:特征值定义

三阶矩阵A的特征值全是0,则R(A)=?为什么

可以为0,A为零矩阵可以为1,举例A=001000000可以为2,举例A=010001000不可以为3,因为矩阵的特征值全部为0则可知|A|=0那么A的秩一定小于3

已知三阶矩阵A的特征值为 -1,1,2,矩阵B=A-3A^2.试求B的特征值和detB.

因为B=A-3A^2所以2E+B=(E-A0(2E+3A)4E+B=(E+A)(4E-3A)10E+B=(2E-A)(5E+3A)又A的特征值为:-1,1,2所以det(2E+B)=0det(4E+B

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

已知三阶矩阵A的特征值为1,-2,3,则(2A)、 A^(-1)的特征值为?

|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式

三阶矩阵A={3 -2 -4,-2 6 -2,-4 -2 3} 求矩阵的特征值与特征向量

再问:������ϸ˵˵�������ô������� � ���˺þ� ��û����再答:

已知三阶矩阵的特征向量和特征值

不要,那样就麻烦了!由(1)得b=k1a1+k2a2+k3a3两边左乘A得Ab=k1Aa1+k2Aa2+k3Aa3=k1a1+2k2a2+3k3a3同样的道理再两边左乘A得A^2b=k1Aa1+2k2

三阶矩阵A的特征值为1,2,3,则A^2+E的特征值为

AX=λX(A^2)X=(λ^2)XEX=X(A^2+E)X=(λ^2+1)XA^2+E的特征值为2,5,10再问:谢谢你

已知三阶可逆矩阵的特征值为1,3,4,求B=A+A2的特征值

先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、

三阶矩阵,其秩为1,那么他的0的特征值有几重?

至少2重.因为r(A)=1所以Ax=0的基础解系含n-r(A)=3-1=2个向量而特征值的重数不小于其几何重数所以0特征值至少是2重.再问:几何重数是什么?再答:就是Ax=0的基础解系含向量的个数或用

已知三阶矩阵A的三个特征值为1,-2,3,则|A|=?A^-1的特征值为?A^T的特征值为?A*的特征值为?

|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2

已知三阶矩阵A特征值为1 2 -3

对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(

二阶矩阵 特征值 公式是什么的?

这个没有什么公式呀,只是二阶的比较容易算而已.再问:那么假设一个二阶矩阵abcd他的两个特征值是什么?再答:自己代入算吧,这种题目算公式没意思。如果是考研的话,一般会出三阶的题目,然后求特征值与特征向