1证明f(x)在有理数域上可约的充要条件是可以表示成整系数多项式的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:49:40
高数证明题-连续性已知 f 在R上连续,当x属于有理数,f (X) = 0.证明:f (x) 在R上都为0

试着证明一下.反证法.假设f(x)在某一个无理数点不为0,那么不妨设为f(x0)=a>0,根据连续函数的保号性可知,存在某一个x0的邻域e,在这个e内f(x)>0,实数有下列性质(实数的稠密性):任意

证明f(x)=1/x+2,在x>0时,f(x)单调递减

设0<x1<x2,则f(x2)-f(x1)=(1/x2+2)-(1/x1+2)=1/x2-1/x1=(x1-x2)/(x1x2)∵x1<x2x1,x2>0∴f(x2)-f(x1)<0∴f(x2)<f(

当x,y都是有理数时,f(x,y)=1,当x或y是无理数时,f(x,y)=0,证明f(x,y)在任何矩形上不可积

首先将矩形区域任意分成n个小区域,若每个小区域上任取一点的坐标x或y是有理数时,f(x,y)=1,因此积分和为整个矩形趋于的面积;若每个小区域上任取一点的坐标x或y是无理数时,f(x,y)=0,因此积

当x,y都是有理数时,f(x,y)=1,当x或y是无理数时,f(x,y)=0,证明f(x,y)在任何矩形上不可积

首先将矩形区域任意分成n个小区域,若每个小区域上任取一点的坐标x或y是有理数时,f(x,y)=1,因此积分和为整个矩形趋于的面积;若每个小区域上任取一点的坐标x或y是无理数时,f(x,y)=0,因此积

高数证明题:设函数f(x)在区间[0,1]上连续,证明

作变量替换t=π-x,代入可得原式=∫(π-t)f(sinx)d(-t)(积分限是从π到0),化简一下得∫(从π到0)t*f(sint)dt+π∫(从0到π)f(sint)dt,第一项与原式相差一下负

设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x

f'(x)=f(x),即dy/dx=ydy/y=dx两边积分:lny=x+C两边取e指数:y=e^x+Cf(0)=e^0+C=1C=0所以,f(x)=e^x再问:两边积分那步是怎么得来的啊?再答:∫(

设f(x)=x²+1(1)证明f(x)是偶函数(2)用定义证明f(x)在[0,正无穷)上是增函数!

(1)f(-x)=(-x)^2+1=x^2+1=f(x),因此f(x)是偶函数(2)设x1>x2>0,则有f(x1)-f(x2)=(x1)^2+1-(x2)^2-1=(x1+x2)(x1-x2).有假

f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx

提示一下,转化到二重积分来证明再问:请明示谢谢再答:积分区域不写了,都是[0,1]或[0,1]^2首先注意∫xdx=1/2,然后2∫xf(x)dx-∫f(x)dx=∫(∫xf(x)dx)dy+∫(∫y

f(x)在(+无穷,-无穷)满足f'(x)=f(x),f(o)=1,证明f(x)=e^x

令F(x)=e^(-x)f(x)可以知道F'(x)=0所以F(x)=e^(-x)f(x)=C是常数f(x)=Ce^xf(0)=C=1有f(x)=e^x

f(x)是定义在R上函数,且f(x+2)=(1+f(x))/(1-f(x))试证明f(x)为周期函数

f(x+2)=[1+f(x)]/[1-f(x)]1+f(x+2)=1+[1+f(x)]/[1-f(x)]=2/[1-f(x)]1-f(x+2)=1-[1+f(x)]/[1-f(x)]=-2f(x)/[

一道高数证明题,设函数f(x)在[0,1]上可导,且|f'(x)|

...楼上是懒得写吧,这个确实挺简单的,但写起来很麻烦废话不多说,原式=|∑[(∫(i-1/n,i/n)f(x)dx-(1/n)f(i/n)]|.(i=1,2,3,...n)利用积分中值定理∫(i-1

证明 :f(x)在(正无穷,负无穷)有定义,且f'(x)=f(x) ,f(0)=1 ,则f(x)=e^x

这是齐次微分方程,看书吧,书上有.不符合罗尔定理的条件.再问:这个是同济版高等数学书上原题....

高数导数存在性问题已知Q表示有理数集.证明:f(x)只在x=0处可导

首先(x^2)'=2x,-(x^2)'=-2xf(x)在a处可导等价于无论x以有理数趋近于a还是无理数趋近于a,它的导数值都相等.所以无理数趋近的导数为2a,有理数趋近的导数为-2a,得2a=-2a于

f(x)=0 if x 是有理数 =1 ifx是无理数 怎么用反证法 利用极限定义证明f(x)的极限不存在?

证明:假设存在点x0,lim(x->x0)存在且为A.即对于任意给定的小正数ε,当|x-x0|

设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1

令x=y=0f(0)=f(0)×f(0)f(0)不等于0,f(0)=1令y=0f(0)=f(x)×f(0)f(x)=1

一个多项式的证明题:设整系数多项式f(x)对无限个整数值x的函数值都是素数,则 f(x)在有理数域上不可约.

反证法.假设f(x)在有理数上可约,设f(x)=g(x)*h(x)其中g(x),h(x)都是有理数系数的多项式使f(x)为素数的x值中,g(x)与h(x)至少有一个为1或-1,否则f(x)为合数了.又

如何证明函数在定义域内有界 证明f(x)=x/1+x*x有界

最基本的方法是利用定义.即:设f(x)的定义域为D,若存在M>0,使得|f(x)|≤M(x∈D),则f(x)在D内有界.以本题为例:显然已知函数f(x)=x/(1+x²)的定义域为R.利用基

已知函数f(x)=log2(1+x^2) (1)证明函数f(x)是偶函数 (2)证明函数f(x)在区间(0,+∞)上是增

(1)证明:x属于R,所以x定义域对称f(-x)=log2(1+(-x)^2)=log2(1+x^2)=f(x)所以f(x)为偶函数(2)证明:设x1>x2>0f(x1)-f(x2)=log2(1+x