1.等比数列{an}的前n项和Sn=2×3n+a,则a等于 ( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:30:12
A(n+1)=2S(n)+1,A(n)=2S(n-1)+1,A(n+1)-A(n)=2[S(n)-S(n-1)]=2[A(n)],A(n+1)=3A(n)所以,数列{A(n)}是首项为1,公比为3的等
n,an,Sn成等差数列,所以n+Sn=2an,即Sn=2an-n,an+1=Sn+1-Sn=2an+1-n-1-2an+n=2an+1-2an-1化简就是an+1=2an+1an+1+1=2an+2
Sn=2^(2n-1)a1^2=S1=2n>=2:an^2=Sn-S(n-1)=2^(2n-1)-2^(2n-3)=2^(2n-3)*(4-1)=3*2^(2n-3)所以有an=根号3*2^(n-3/
是不是Sn=2^n-1?S(n-1)=2^(n-1)-1所以an=Sn-S(n-1)=2^(n-1)所以an^2=4^(n-1)a1^2=1所以和=1*(1-4^n)/(1-4)=(4^n-1)/3
证明:当n=1时,a1=S1=21-1=1.当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.又当n=1时,2n-1=21-1=1=a1,∴an=2n-1.∴
利用当n大于等于2时an=sn-s(n-1)=2的n次方-1-(2的n-1次方-1)=2的n-1次方.然后后一项比前一项=2,所以an为等比数列
n=1时,a1=1+3a1.即a1=-1/2.n>1时,an=Sn-Sn-1=1+3an-(1+3a(n-1))=3an-3a(n-1),即an=3/2a(n-1),即an=-1/2*(3/2)^(n
1:因为等比数列{an}的前n项和(在q≠1的情况下)为Sn=a1*(q^n-1)/(q-1)对比2^n-1,马上知道a1=1,q=2,所以an=2^(n-1),则an^2=4^(n-1),数列{an
令Tn为{anbn}的前n项和,那么:Tn=a1b1+a2b2+…+anbn=1×20+3×21+5×22+…+(2n-1)•2n-12Tn=1×21+3×22+5×23+…(2n-1)•2n∴Tn=
∵等比数列{an}前n项的和为2n-1,∴a1=s1=2-1=1,a2=s2-s1=(4-1)-1=2,故公比为q=a2a1=2.故数列{an2}的首项为1,公比等于4,数列{an2}前n项的和为1×
Sn=n-5an-85则an=Sn-S(n-1)=n-5an-85-(n-1)+5a(n-1)+85=1-5an+5a(n-1)即6an=5a(n-1)+16an-6=5a(n-1)+1-66(an-
设{an}的公比为q,由S4=1,S8=17知q≠1,∴得a1(q4−1)q−1=1①a1(q8−1)q−1=17②由①和②式整理得q8−1q4−1=17解得q4=16所以q=2或q=-2将q=2代入
因为S1=a1=(2^1)-1=1;又:Sn=a1*(1-q^n)/(1-q),且依题得知q=2所以,得an=a1*q^(n-1)=2^(n-1)则bn={(an)^2}=2^(2n-2)在数列bn中
(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1
由题意知:Sn=2^n-1根据an=Sn-S(n-1)(n>1)则:an=(2^n-1)-[2^(n-1)-1]=2^(n-1)(n>1)即:an=2^(n-1)(n>1)一定要验证下:当n=1时上式
设公比是qan+2an+1+an+2=0∴an+2an*q+an*q²=0∴an(1+2q+q²)=0∵an≠0∴1+2q+q²=0∴(q+1)²=0∴q=-1
设等比数列{an}的公比为q,则可得an=2•qn-1,故an+1=2•qn-1+1,可得a1+1=3,a2+1=2q+1,a3+1=2q2+1,由于数列{an+1}也是等比数列,故(2q+1)2=3
由Sn=3n-1-rn≥2,an=Sn-Sn-1=3n-1-r-3n-2+r=2•3n-2,由数列{an}是等比数列可得a1=S1=1-r适合上式∴1-r=23,∴r=13.故答案为:13.
(1)令n=1,得a1=-1.Sn=2an+n,S(n+1)=2a(n+1)+n+1.两式相减,得a(n+1)=2a(n+1)-2an+1.整理得a(n+1)-1=2(an-1),a1-1=-2.综上
(1)令S=a1+a2+.+an,即S=a1+a1*q+.+a1*q^(n-1)则qS=a1*q+a1*q^2+a1*q^n故(1-q)S=a1-a1*q^n得S=a1(1-q^n)/(1-q)(2)