2.5 若4阶实对称矩阵A是正定矩阵,则二次型f=xTAx的正惯性指数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:41:14
线性代数:n阶方阵A正定,为什么知A是实对称矩阵?

正定矩阵的概念来源于正定二次型即X^TAX>0(X≠0时)所以A是对称的.线性代数考虑的范围为实数,实二次型所以有时默认正定矩阵是实对称矩阵再问:那么正定和实对称矩阵有什么关系呢?比如充要、充分、必要

设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵

(1)设λ是A在复数域内的一个特征值,X是属于λ的特征向量(未必是实向量),即有AX=λX.用B*表示B的复共轭的转置,由A是实对称矩阵,有A*=A.考虑1×1矩阵X*AX,可知(X*AX)*=X*A

请问:A,B均为n阶实对称矩阵,且都正定,那么AB一定是:A对称矩阵B正定矩阵C可逆矩阵D正交矩阵

正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?

设A是n阶实对称正定矩阵,证明|A|

设A﹙n-1﹚是A的n-1阶顺序主子式,P﹙n-1﹚=|A﹙n-1﹚|﹙行列式﹚|A|=|A﹙n-1﹚X||X′ann|﹙X=﹙an1an2……ann-1﹚′=﹙按第二块行折开﹚|A﹙n-1﹚X|+|

设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零

因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0

若n阶矩阵A,B都正定,则A,B一定是() a.对称矩阵b.正交矩阵c.正定矩阵d.可逆矩阵

亲爱的楼主:【正解】这个(D)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.祝您步步高升,新年快乐!记得点击采纳为满意答案哦,谢谢您的支持!再问:��л���

线性代数 若n阶对称矩阵A是正定矩阵,那么A的秩一定为n吗?为什么呢?

正定矩阵首先是满秩矩阵,因此答案是正确的.

设A,B均是n阶实对称矩阵,且A是正定矩阵,B是半正定矩阵,证明|A+B|>|B|

前两天看你问过,一个人答了,估计没看懂,我也没看懂,我就用比较浅显的知识给你证明吧,高深的我也不会.哈哈!

实对称矩阵A正定的充要条件是A的伴随矩阵为正定的,为什么?

必要性:adj(A)=A^{-1}/det(A)因此adj(A)正定充分性的反例:A=-1000-1000-1adj(A)=-A

A,B可交换且是对称半正定矩阵,证明AB是对称半正定矩阵.注意是半正定!

A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么

证明若A、B是两个实对称的n阶正定矩阵,则A B亦然

题目不对吧如A=(10)B=(31)则AB=(31)都不对(02)(14)(28)称更别说正定了(上面是3个2阶方阵打不好上下对不齐)我觉得原题是说AB特征植大于0证明AB正定存在PQ可逆A=P*TP

n阶实对称矩阵A为正定矩阵的充要条件为什么是A逆为正定矩阵,请大家指教,

先来一些必要的陈述,说明实对称矩阵A的逆矩阵也是实对称矩阵,进而能讨论正定的问题.[A^(-1)]^T=[A^T]^(-1)=A^(-1)所以A的逆矩阵也是实对称阵.接下来正式开始证明:可以从特征值的

设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵

这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.

设AB均是n阶实对称矩阵,其中A正定,证明存在实数t使tA+B是正定矩阵

这个证明很容易,AB为n阶实对称阵,均可对角化.设A的特征值为λ1,λ2,λ3.λn,其中λi均>0(A是正交矩阵,特征值均大于0)另设B的特征值为λ1‘,λ2’,λ3‘.λn’tA+B的特征值φ(λ

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

求证,多谢! A、B是n阶实对称正定矩阵,求证:若A-B正定,则B的逆矩阵-A的逆矩阵正定

取可逆阵C使得A=CC^T,那么A-B正定等价于I-C^{-1}BC^{-T}正定,再分析后者的特征值即可.更省事的做法是B^{-1}-A^{-1}=A^{-1}(A-B)A^{-1}+A^{-1}(

如果A是正定矩阵,那么A一定是实对称矩阵对吗?

显然不对,比如矩阵A:第一行3,4第二行4,6.这不是对称阵,但是它是正定矩阵.正定判定如下:计算二次型(x1,x2)A(x1,x2)^T=3(x1^2+2x1x2+2x2^2)=3((x1+x2)^