20.如图5,已知半圆O的半径AO=4厘米,则阴影部分的面积是 平方厘米.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:01:10
如图,MN为半圆O的直径,半径OA⊥MN,D为OA的中点,过点D

(1)由“平行线分线段成比例”可得D为BC中点.所以AO垂直平分BC,四边形ABOC为菱形(2)题目好像错了

已知如图,在半径为R的半圆O中,半径OA⊥直径BC,点E和点F分别在AB、AC上滑动,且保持AE=CF,但点F不与AC重

1可证三角形OEA全等于三角形OCF所以S四边形AEOF=S三角形OCF+S三角形OFA所以S四边形AEOF=二分之一R平方第二题还要想想明天再说

求数学大神 ! 如图 半圆o的直径ab=8根号2,半径oc

设圆O2的半径为R.连结O1O2,过O2做O2E⊥OO1于E,O2D⊥AB于D,由题意圆O1的半径为2根2.由相切两圆的性质得,O1O2=2根2+R,EO1=2根2-R.OO2=4根2-R.在Rt△O

如图,已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且CD=32R,试求AC的长.

(1)当C点在A、O之间时,如图甲.由勾股定理OC=R2−(32R)2=12R,故AC=R-12R=12R;(2)当C点在B、O之间时,如图乙.由勾股定理知OC=R2−(32R)2=12R,故AC=R

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,已知在半圆O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM,OP以及圆O上,并且∠POM=45°,求正

连接AO,因为POM=45°所以BO=2AB即tanAOB=1/2,故sinAOB=根号5/5所以AB=根号5

如图,已知点A是以MN为直径的半圆上一个三等分点,点B是AN的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP

作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′,OB,∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵

如图,AB为半圆O的直径,以OA为半径作半圆M,C为OB的中点,过点C做半圆M的切线叫半圆M于点D,延长AD叫圆O于

大圆半径为2则小圆M半径为1C为OB中点则OC=OM=1CD为圆M的切线且MD=MC/2则直角△MDC中∠DMC=60则S△MDC=(根号3)/2在三角形ADM中,AM=DM外角DMC=60则∠DAM

.如图,AB是半圆O的直径,OB是半圆C的直径,半圆O的弦AE切半圆C于F,若AE=8,1:求半圆C的半径2:三

解题思路:此题考查勾股定理在解题中的应用,利用面积差求三角形的面积解题过程:连接CF,则CF⊥AE∵BE⊥AE∴CF∥BE∴AF/AE=CF/BE=AC/AB设OC=r,则AB=4r∵AE=8∴AF=

如图,半圆O的半径为r,求图形中阴影部分的面积

图明显画的不对,既然底角45°,r=r,那么连结o点和两阴影交点设A点,右下角是一个等腰直角三角形,面积是:1/2r²①,那么左下角1/4圆面积:1/4πr²②半圆面积:1/2πr

(2006•韶关)如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为23

(1)证明:∵四边形ABED为⊙O的内接四边形,∴∠CED=∠A(或∠CDE=∠B);又∠C=∠C,∴△CDE∽△CBA.(2)解法1:连接AE.由(1)得DEBA=CECA,∵AB为⊙O的直径,∴∠

如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为 。

(1)∵四边形ABED为⊙O的内接四边形,∴∠CED=∠A(或∠CDE=∠B);又∠C=∠C,∴△CDE∽△CBA,(2)连接AE,由(1)得,∵AB为⊙O的直径,∴∠AEB=∠AEC=90°,在Rt

如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为 2 3

(1)证明:∵四边形ABED为⊙O的内接四边形,∴∠CED=∠A(或∠CDE=∠B);又∠C=∠C,∴△CDE∽△CBA.(2)解法1:连接AE.由(1)得DEBA=CECA,∵AB为⊙O的直径,∴∠

如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为 2 3 .

(1)证明:∵四边形ABED为⊙O的内接四边形,∴∠CED=∠A(或∠CDE=∠B);又∠C=∠C,∴△CDE∽△CBA.(2)解法1:连接AE.由(1)得DEBA=CECA,∵AB为⊙O的直径,∴∠

如图,半圆O 的直径AB=12,半径OC⊥AB,圆O'与半圆O相内切,并且OB,OC相切于点D,E,求圆O’的半径

设圆O’的半径x,则OD=O'E=x==>OO'=√2x根据题意知OE=OO'+O'E==>6=√2x+x(OE=AB/2)解此方程得x=6(√2-1)故圆O’的半径6(√2-1).

如图,已知大半圆的半径是30厘米,小半圆的半径是20厘米,则图中阴影部分的周长是(  )厘米.

3.14×30+3.14×20+30×2,=94.2+62.8+60,=217(厘米);答:阴影部分的周长是217厘米.故选:C.

如图,已知半圆O的半径OA=2,P是OA延长线上的一点,过线段OP的中点B作垂线交圆O于点C,射线PC交半圆O于点D,

1)因为B是OP的中点,所以BP=OB因为BC⊥OP所以BC是OP的垂直平分线所以PC=CO所以∠DPO=∠COP因为弧AC=弧CD所以∠DOC=∠COP所以∠DPO=∠DOC2)设CD=x,则DP=

如图,已知在半圆O中直径MN=10,正方形ABCD的四个顶点分别在半径OM ,OP以及圆O上,并且角POM==45°,求

∠DOC=45∠DCO=90CO=DC连接AO(BC+CO)平方+AB平方=AO平方设BC等于x(AO半径)则有5平方=4(X平方)+(X平方)x=根号5