两个相互独立的正态分布,则P{2X-Y>4}的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:32:50
两个独立正态分布随机变量的线性组合还是正态分布,为什么?

两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于

概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

设随机变量X与Y相互独立,且都服从正态分布N(0,1),则P{max(X,Y)≥0}=______.

P{max(X,Y)≥0}=1-P{max(X,Y)<0}=1-P{X<0,Y<0}由于随机变量X与Y相互独立,所以:P{max(X,Y)≥0}=1−P{X<0}P{Y<0}=1−Φ2(0)=34.故

概率统计学.设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1)则.A,P{X+Y

N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=

设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则(  )

根据正态分布的性质,易知:X+Y,X-Y均服从正态分布,根据数学期望与方差的性质:E(X+Y)=E(X)+E(Y)=1,D(X+Y)=D(X)+D(Y)=2,E(X-Y)=E(X)-E(Y)=-1,D

若A , B是相互独立的两个事件,且P(A)P(B)>0. 则下列结论一定成立的是 ( )

选A,因为,A,B是相互独立的,则P(AB)=P(A)P(B),又P(A)P(B)>0,则P(AB)>0;所以A和B有交集.即A与B相容

若A ,B是相互独立的两个事件,且P(A)P(B)>0.则下列结论一定成立的是 ( ).

因为A和B独立,所以有P(AB)=P(A)P(B)>0,即A和B一定是相容的.故选A.

两个随机变量相互独立的条件

联合分布函数F(x,y)=F(x)*(y)或密度函数p(x,y)=p(x)*p(y)

设随机变量X与Y相互独立且都服从正态分布N(μ,12),若P{X+Y≤1}=12,则μ等于(  )

设Z=X+Y,X、Y独立且都服从正态分布N(μ,12),Z也服从正态分布D(Z)=D(X)+D(Y)=1,E(Z)=μ+μ=2μZ~N(2μ,1)所以:Z-2μ~N(0,1)P(Z≤1)=P(Z-1≤

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-

设A,B是两个相互独立的随机事件,且P(A)=1/4,P(B)=1/3,则P(B-A)=

B-A就是B发生,A不发生.P(B-A)=P(B)*[1-P(A)]=1/4

设 A、B 为两个相互独立的随机事件,且 P(A)=0.4 , P(B)=0.3,则P(~(A+B))=?

根据概率的相关计算P=0.88再问:为什么呢?再答:A+B就是A与B同事发生,所以0.4乘以0.3=0,.12然后是A+B的对立事件所以=1-0.12=0.88望采纳

两个相互独立但是相同的正态分布相减得到什么样的分布?

因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)

X与Y是两个相互独立同分布且他们都服从标准正态分布,则X^2/(X^2+Y^2)的期望是多少

因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2

相互独立的正态分布函数相加减,还是正态分布么?均值和方差的是怎样的?

是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).

两个正态分布相互独立是两个正态分布的线性函数也是正态分布什么条件

两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数