两个相互独立的正态分布,则P{2X-Y>4}的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:32:50
两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
P{max(X,Y)≥0}=1-P{max(X,Y)<0}=1-P{X<0,Y<0}由于随机变量X与Y相互独立,所以:P{max(X,Y)≥0}=1−P{X<0}P{Y<0}=1−Φ2(0)=34.故
N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=
根据正态分布的性质,易知:X+Y,X-Y均服从正态分布,根据数学期望与方差的性质:E(X+Y)=E(X)+E(Y)=1,D(X+Y)=D(X)+D(Y)=2,E(X-Y)=E(X)-E(Y)=-1,D
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
选A,因为,A,B是相互独立的,则P(AB)=P(A)P(B),又P(A)P(B)>0,则P(AB)>0;所以A和B有交集.即A与B相容
因为A和B独立,所以有P(AB)=P(A)P(B)>0,即A和B一定是相容的.故选A.
联合分布函数F(x,y)=F(x)*(y)或密度函数p(x,y)=p(x)*p(y)
设Z=X+Y,X、Y独立且都服从正态分布N(μ,12),Z也服从正态分布D(Z)=D(X)+D(Y)=1,E(Z)=μ+μ=2μZ~N(2μ,1)所以:Z-2μ~N(0,1)P(Z≤1)=P(Z-1≤
分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-
B-A就是B发生,A不发生.P(B-A)=P(B)*[1-P(A)]=1/4
根据概率的相关计算P=0.88再问:为什么呢?再答:A+B就是A与B同事发生,所以0.4乘以0.3=0,.12然后是A+B的对立事件所以=1-0.12=0.88望采纳
因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)
因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2
是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).
两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数