两人约定于9点到10点间在公园门前见面,试求一人要等另一个人半小时以上的概率
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:07:52
7/16以6点为0,7点为4,则15分钟即为1设两人到达的时刻所对应的数值为X,Y显然0
一刻钟=15分钟我们先假设乙不能比甲先到.当甲在7:00到达时,乙只有在7:15前到达才能与甲相遇,若他在其余45分钟出现即不能相遇,所以第一个几率为15/60(即1/4);当甲于7:01时出现,乙就
前提是甲乙到达时间都是独立事件且在任意时刻到达的概率相同11/36如图,横纵轴分别为甲乙到达的时间,则正方形与任何一种到达情况对应.阴影部分就是两个人能相遇的情况.阴影面积处以总的正方形面积就是相遇概
画图用面积来算横坐标取乙到达的时间,纵坐标取甲到达的时间.则它们的定义域可以设定为0到60(对应一个小时).则总的面积是60*60=3600而他们能碰面的话就两种情况:T乙-T甲
IwaswatchingTVfrom9:00pmto10:00pmlastnight.
设两个人分别在9点X和Y分到公园门前,于是样本空间是{0
解在平面上建立如图所示直角坐标系,直线x=60,直线y=60,x轴,y轴围成一个正方形区域G.设甲8时x分到达会面地点,乙8时y分到达会面地点,这个结果与平面上的点(x,y)对应.于是试验的所有可能结
两人相见的概率是7/16.只要画一个边长为1的正方形,每边平均分为四份,五个分点从左到右、从下到上分别表示4:00,4:15,4:30,4:45,5:00.横坐标表示甲到达时刻x,纵坐标表示乙到达时刻
设甲乙二人到见面地点的时刻分别是8点后x分钟、y分钟,0≤x≤60,0≤y≤60,│x-y│≤20所概率等于y=x-20与y=x+20,x=0,y=0,x=60,y=60所图形的面积除以直线x=0,y
设甲乙到的时间分别为x,y(以分为单位),两人会面,则|x-y|
即求两个人到达时间相距
1:概率是25%以为这个时间段里只有4辆车.随便怎么坐都不会在小于这个概率了.2:的概率则是50%以为没人都要放弃一辆车所以就等于放弃了50%
由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|2<x<3,2<y<3}事件对应的集合表示的面积是s=1,满足条件的事件是A={(x,y)|7<x<8,7<y<8,|x-y|<13事
郭敦顒回答:[0.5/(8-6)]×[0.5/(8-6)]=0.0625,两人会面的概率是0.0625.
假设甲到得时间是5点x分,乙到得时间是5点y分.x和y是取值在0~60之间均布的两个独立变量.而两人能见到面的充分必要条件是:|x-y|≤20通过上面的分析,你可以画一个图:包括所有可能的是一个正方形
5/9建立直角坐标系总共是60*60因为x-y的绝对值小于等于20所以p(A)=(60平方-40平方)/60平方=5/9
这个属于几何概型的.建立直角坐标系.x轴代表甲到达的时刻,y轴代表乙到达的时刻.以10点为原点,则在边长为30的正方形中,任意一点的值都可代表甲乙到达的时刻(这里以边长3的正方形).两人在15分钟内见