两数之和的绝对值的几何意义
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:46:34
几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值.(在数轴上表示数a的点与原点的距离一定是非负数)代数定义:|a|={a>0a=a{a
大于零,小于零,等于零再问:。。。。。再问:不应该是一大段么再答:不是,那是概念,总结一下就是了再问:。。。再问:要概念再问:给了很长的格子再答:去百度再问:4个空啊大哥再问:。。。。再问:懒得百度啊
这道题要看n是奇数还是偶数,首先把a1到an从小到大排列,并记为b1,b2到bn当n=1时,显然x=bn时最小,为0当n=2时,|x-b(1)|+|x-b(2)|的几何意义是x到b1和b2的距离之和,
用反证法:假设|x-1|+|x-2|=0所以当等于0时可取最小值x=1=>|x-1|+|x-2|=1与|x-1|+|x-2||x-1|+|x-2|=1与|x-1|+|x-2|=1
1.它与0的差2.与数轴上原点的距离3.|a|-04.与原点的距离有理数
绝对值的几何意义可以借助数轴来加以认识,一个数的绝对值就是数轴上表示这个数的点到原点的距离,如∣a∣表示数轴上a点到原点的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数a的点之间的距
这题借助于数轴很好解决/x-2/-/x+4/含义是x到2的距离与x到-4距离的差∴当x≥2/x-2/-/x+4/=-6当-4
语言方式解题,|X-3|≥4表示数轴上到3的距离比4大,数轴上到3的距离等于4的数有3+4=7与3-4=-1,∴不等式的解集为:X≤-1或X≥7.|X-2|+|X+2|=6,表示X到±2距离之和为6,
就是x到1和3的距离和大于4显然x=4和x=0时,距离和正好是4所以x4
绝对值教学要求:1.从几何和代数两个角度正确理解绝对值的意义.2.会求一个数的绝对值.3.会利用绝对值比较两个负数的大小.重点、难点:重点:理解绝对值的意义,掌握其求法.难点:利用绝对值比较两个负有理
离原点的实际距离
是两个数在数轴上对应的点之间的距离
一个数的绝对值就是表示这个数的点到原点的距离.离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小希望采纳
ab之间的距离
非负数的绝对值是其本身即正数和零的绝对值就是和原来的相同负数的绝对值是其相反数,就是把负号去掉
几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值.(在数轴上表示数a的点与原点的距离一定是非负数)代数定义:|a|={a>0a=a{a
|X-1|+|X-3|>4,可以理解成数轴上未知点x到点1距离和到点3的距离之和要大于4,即不能太靠近数轴上的1和3两点.由于绝对值只能是正,当对负数求绝对值时就要重新把它变号成正,所以对含未知
解题思路:根据|a-b|+|b-c|表示数b的点到a与c两点的距离的和,|a-c|表示数a与c两点的距离解题过程:解:∵|a-b|+|b-c|=|a-c|,根据|a-b|+|b-c|表示数b的点到a与
"距离"不可能是(负数),因此一个数的绝对值也不可能是(负数).
表示该有理数所对应的点到原点的距离,称之为有理数的绝对值