为什么A的行列式等于0,非齐次方程组有解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:17:10
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
1、任何方阵都可以通过初等行变换转化为上三角阵.2、上三角阵的行列式为0当且仅当主对角线上的元素中有0.3、n阶上三角阵的秩=n-主对角线上0的个数.4、初等行变换=左乘(可逆)初等矩阵.于是初等行变
A*B的行列式等于A的行列式*B的行列式吗注意条件:A、B是n阶矩阵.则A*B的行列式等于A的行列式*B的行列式否则A*B的行列式有意义,但A的行列式或B的行列式可能无意义.
那A的阶至少是3哈再问:可以解释再清楚一点吗?再答:因为n阶方阵A的秩小于n的充分必要条件是|A|=0.所以若|A|=0,则r(A)=2
直接打格式不好编辑,我手写了答案,你看图片吧.再插一句:给矩阵乘一个系数相当于给每个元素都乘以这个系数,而给行列式乘一个系数则是给一行或是一列乘以这个系数.
由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列
AA*=|A|E|AA*|=|A|^n再问:�Ҿ�����Ϊʲô|A|��|A*|=|A|^n再答:���|A|�ᵽE����ȥ����ᷢ�ִ����ϵ����µ�һ������|A|,����|A|
是的这个证明一般的高等代数书上应该都有的如果没有书可以看看这个视频
说实话我没见过这样形式的行列式,但是我肯定||A||并不是代表A的行列式的行列式,行列式已经是一个值了,不能再求其行列式了,它的意义应该是||A|E|,即单位矩阵乘|A|的行列式,|A|E表示的矩阵是
我这里有个证明:我空间相册里的,有好多线性代数题目,你可以去看看.公开的,不是好友也可以看再问:证明A的行列式等于先将A转置后再求行列式再答:这个首先要看你教材中行列式是如何定义的定义方法一般有两种1
a>=2或者a=0
因为半正定矩阵的特征值>=0半正定矩阵是对称矩阵所以可以对角化(定理)A=P*B*P^-1|A|=|B|>=0即证
一个矩阵的行列式就是一个数值,一个数值的行列式就是他自己.
|AA^T|=|A||A^T|=|A||A|=|A|^2
应该是|A*|=|A|^(n-1)讨论一下,若r(A)=n,则AA*=|A|E,故|A||A*|=|A|^n,即|A*|=|A|^(n-1).若r(A)
这是行列式的乘法公式|AB|=|A||B|证明方法是构造分块矩阵A0-EB-->0AB-EB由Laplace展开定理第一个行列式等于|A||B|第二个行列式等于|AB|如果你学线性代数,这个公式的证明
数值a的逆就是它的倒数1/a因为AA^-1=E两边取行列式得|A||A^-1|=|E|=1所以|A|与|A^-1|互为倒数,|A^-1|=1/|A|=|A|^-1
|AA^T|=|A||A^T|=|A||A|=|A|^2再问:不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2再答:这不会.AA^T是一个矩阵,|A|^2是一个数肯定是AA^T的行
定理5.2设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式吗这个是不成立的