(un vn)^2收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:29:34
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
由于∑u²收敛,∑1/n发散,因此存在N,当n>N时,有u²
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
未必.例如 an=[(-1)^n]/√n,则交错级数∑an收敛,但级数 ∑an^2=Σ(1/n)是调和级数,是发散的.
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
用比较判别法证明.经济数学团队帮你解答.请及时评价.
这是级数Σ(-1)^n/√(n+1),n从1到∞这可以看成Σanbn,其中an=1/√(n+1),bn=(-1)^n因为{an}单调趋近于0,|Σbn|≤1有界,所以根据Dirichlet判别法,级数
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
你有问题也可以在这里向我提问:
n^2+x^2≥n^2级数的一般项的绝对值≤|an|/n≤(an^2+1/n^2)/2由比较判别法,原级数绝对收敛故收敛域为一切实数
1)先这么理解: ln(n) 同 n^p 相比是低阶的...判断原级数敛散性完全可以看成是判断级数∑1/(n^3/2)的敛散性...于是可初步判断原级数收敛2)
发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u
收敛域[-2,2),可用求导求积法求和.
an^2收敛说明,an^2有界,就是说存在M>0,使得an^2
这是错的.比如Un=1/n
发散...这是个P级数,p级数收敛要其指数大于1,题目的指数是1/2
要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
稍等,给你上个图.