(un vn)^2收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:29:34
正项级数un,vn收敛 求证 级数(un+vn)^2收敛 高手来 !

若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un

设级数∑u^2收敛,证明∑u/n绝对收敛

由于∑u²收敛,∑1/n发散,因此存在N,当n>N时,有u²

级数an^2收敛,证明级数an除以n收敛(an>0)

利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p

若级数∑an收敛,则级数∑an^2 必收敛

未必.例如    an=[(-1)^n]/√n,则交错级数∑an收敛,但级数    ∑an^2=Σ(1/n)是调和级数,是发散的.

设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散

若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因

设正项级数∑Un收敛,数列{Vn}有界,证明级数∑UnVn绝对收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

判断级数-1/√2+1/√3-1/√4..是否收敛 是条件收敛还是绝对收敛

这是级数Σ(-1)^n/√(n+1),n从1到∞这可以看成Σanbn,其中an=1/√(n+1),bn=(-1)^n因为{an}单调趋近于0,|Σbn|≤1有界,所以根据Dirichlet判别法,级数

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

求解一道高数题,已知级数an^2收敛,求收敛域

n^2+x^2≥n^2级数的一般项的绝对值≤|an|/n≤(an^2+1/n^2)/2由比较判别法,原级数绝对收敛故收敛域为一切实数

判别级数是否收敛∑[(ln n)^2]/(n^3/2)用极限判别法判别它是否收敛,答案是收敛,同(n^5/4)比较,可是

1)先这么理解: ln(n) 同 n^p 相比是低阶的...判断原级数敛散性完全可以看成是判断级数∑1/(n^3/2)的敛散性...于是可初步判断原级数收敛2)

级数un收敛 那么级数un^2-un+1^2收敛吗

发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u

1求收敛半径及收敛区间.2求和函数

收敛域[-2,2),可用求导求积法求和.

an^2是收敛数列,证明an^2/n也是收敛数列

an^2收敛说明,an^2有界,就是说存在M>0,使得an^2

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

级数∑N^(-1/2) 收敛还是发散?如果收敛,求和之后是多少?

发散...这是个P级数,p级数收敛要其指数大于1,题目的指数是1/2

设∑Un绝对收敛 ∑Vn收敛 证明∑UnVn绝对收敛

要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

un收敛,那么un^2是否收敛

稍等,给你上个图.