为等边三角形ABC内一点,PC=3,PA=4,PB=5,求角APC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:42:04
a^2(当P点为正三角形中心)
延长CP到D,使BP=DP,连接BD,因为BPC=120°,所以BPD=60°,所以△BDP是等边三角形,因为角ABP=角DBC,BP=BD,AB=CB,得出△ABP≌△CBD,所以AP=CD=PB+
如图1,连接PP′,将△BPC绕C点顺时针旋转60°到△AP′C的位置,由旋转的性质,得CP=CP′,∴△PP′C为等边三角形,由旋转的性质可知∠AP′C=∠BPC=150°,∴∠AP′P=150°-
将三角形PAB绕点B旋转至BA与BC重合得到三角形DCB,连接PD则有三角形PAB与DCB全等,角PBD=ABC=60度,BP=BD,PA=DC所以三角形PBD是正三角形,PD=PB,角BPD=60度
∠PBQ=60°且BQ=BPPB=PQ=QB∠ABC=60°∠ABP=∠CBQBQ=BPBA=BC三角形ABP=三角形CBQ所以PA=CQ=3PB=PQ=QB=4PC=5三角形PQC为直角三角形∠PQ
用解析几何,假设A和原点,那么B为(x,0),C就是(x/2,根号3x/2),对把.设P为(a,b),那么,a^2+b^2=16(a-x)^2+b^2=12(a-x/2)^2+(b-根号3x/2)^2
△PBQ的形状是等边因为∠PBQ=60BQ=BP
把三角形APC顺时针旋转60度,AC与AB重合,得到一个三角形AP'B连结PP',AB与PP'相交于D,则
150°将三角形BAP,绕点B顺时针旋转60°使旋转后的A点与C点重合,P点新位置Q点易证三角形BPQ为等边三角形CQ=APCQ^2=PC^2+PQ^2角BPC=角QPC+角BPQ=90+60=150
将三角形BAP,绕点B顺时针旋转60°使旋转后的A点与C点重合,P点新位置Q点易证三角形BPQ为等边三角形,△ABP≌△ACQCQ=AP∵PA平方=PB平方+PC平方PQ=PB,∴CQ^2=PC^2+
证明:首先按照题意画出图.然后以C点为轴将三角形APC旋转至AC与BC重合,此时A点与B点重合,P点到达的新位置设为D点.连接DP.由于角DCP为60度且CD=CP,所以三角形DCP为正三角形,所以D
在△APB中,①AB﹤AP﹢BP在△BPC中,②BC﹤PB﹢PC在△APC中,③AC﹤AP﹢PC①﹢②﹢③得:AB﹢BC﹢CA﹤2AP﹢2BP﹢2PC∵AB=AC=BC∴3AB﹤2AP﹢2BP﹢2CP
把三角形APB以A为中心逆时针旋转60°,这样旋转后的AB'与AC重合,连接P'P,得到一个边长为PA的等边三角形APP',∠APB=∠AP'C=∠AP'P+∠PP'C=60°+∠PP'C.现在只需求
将△BPC绕B点逆时针旋转60°,得△BDC',因为∠ABC=60°,所以C'与A重合则有△BPC≌△BDA,∠BPC=∠BDA可知△BEP为等边△,故∠BDP=60°PD=BP=4,而PA=5,AD
设A(xa,ya),B(xb,yb),C(xc,yc),P(xp,yp)|PA|^2+|PB|^2+|PC|^2=(xa-xp)^2+(ya-yp)^2+(xb-xp)^2+(yb-yp)^2+(xc
过P做PQ⊥BP且PQ=PC∠QPC=∠BPC-∠BPQ=150-90=60º∴等边△PQCBC=ACQC=PC∠BCQ=60-∠BCP=∠PCA∴△BQC≌△APC∴PA²=BQ
将整个图形以定点B旋转60度,使BA转到BC位置,P的新位置为P',C的新位置为C'.P'C'=PC=5,P'C=PA=4,P'B=PB=3.连接PP'明显三角形PP'B为等边三角形(因为角PBP'=
∵PB+PC>BC而p是三角形内一点,∴PA
过P点作BC边的平行线EF,分别交AB、AC于E、F.∵ΔABC为等边三角形,∴∠AFE=∠ABC=60°,又∵∠APE>∠AFE,∴∠APE>60°.在ΔAEP中,∵∠APE>∠AEP,∴AE>AP
再答:没带尺子,就随手画的草图,凑合看啦,还有345直角三角形的那个角度值是求不出准确值的,只能用符号表示一下,53读度只是个近似值,你看一下题目中有没有字母代表那个角的