二维离散型随机变量的期望的求法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:44:15
只要把积分的过程改成求和就可以证明了,如图.
Dξ=(x1-Eξ)^2·p1+(x2-Eξ)^2·p2+……+(xn-Eξ)^2·pn=(x1)^2·p1-2x1p1Eξ+(Eξ)^2+…………+(xn)^2·pn-2xnpnEξ+(Eξ)^2p
如果知道X的分布律,先求出X^2的分布律,再求期望,如果不知道可以考虑楼上的方法……不是……X^204p0.30.7因此
当然不行啊,这是典型的误区,主要有以下两点.(1)期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的.一个随机变量可以有平均值或中位数,但其期望不一定存在.(2)
可以用来设计抽奖活动,保证商家在理论上不亏钱,同时吸引消费者
不是的,数学期望相当于平均值,出现的概率可能为0,如投骰子,
g(x,y)代表任何一个以x,y为自变量的二元函数,但是并不排除x^2啊,g(x,y)=x^2+0*y^2,这完全可以啊.其实g(x,y)可以是任何一个表达式,哪怕是x+y+z呢,没有任何关系.只需要
E(X)=∑xP(x,y)=1*0.1+1*0.3+2*0.4+2*0.2=1.6D(X)=E[(X-EX)^2]=∑(x-EX)^2P(x,y)=(1-1.6)^2*0.1+(1-1.6)^2*0.
不一定吧--设想全部自然数上的均匀分布.
重新列表先将a进行运算,对应的概率不变,再用运算后的a'与对应概率相乘,加和.我说的就是过程啊.
不收敛的话E就没有明确的值了,不存在或者无穷大.绝对收敛的要求例如存在(-1)^n那就不行了.
解题思路:(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,-1,1分别求出对应的概率,即可求出分布列和期望.解题过程:
解题思路:一般根据概率统计的公式分析解答解题过程:附件最终答案:略
5.7x0.3+8x0.35+9x0.2+10x0.15=8.26.取出0个红球的概率是C(2,2)/C(5,2)=1/10取出1个红球的概率是C(3,1)*C(2,1)/C(5,2)=6/10取出2
望采纳!
解题思路:利用概率之和相加等于1求得x的值,利用期望公式解决第二问解题过程:
解题思路:用随机变量ξ表示此项业务的收益额,x表求顾客缴纳的保险金解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prc
Abstract:ThisarticlecitedDiscreteRandomVariableExpectationlaw,includingthedefinitionofmethod,decompo
利用离散型随机变量期望公式求解出期望值一般情况下就是计算一个级数求和
想想二项分布泊松分布和0-1分布的关系就求出来了几何分布就是求级数的和函数自己算算呗查看原帖