二重积分 (2x 3y)dx dy, 其中D为x y = 1所围成的区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:23:41
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤
首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积
pi*(pi/2-1)
原式=4x29y2•27y364x3•4xy=34x2.故答案为34x2.
这一类积分题目,最好的方法肯定是积分变换了.从积分范围出发有令u=x-1/2,v=2y-1/4于是积分范围变成了u^2+v^2≤5/16∫∫(x+y)dxdy=∫∫2(u+1/2+v/2+1/8)du
原式可以化成2+siny/(sinx+siny)或者3-sinx/(sinx+siny),两种情况都求积分,首先siny/(sinx+siny)的积分和sinx/(sinx+siny)应该是一样的,这
使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/
被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2
看来你得多了解极座标的原理再问:怎么确定r的范围呢?再答:极座标要求曲线是光滑,没有转角位的而这个正方形区域在右上角(1,1)这点不光滑(可理解为不可导)所以要在这点把折线割开为两条光滑的直线这两条直
用极坐标算x=ρcosαy=ρsinα积分区域D是上半圆,ρ∈[0,1],α∈[0,π]∫∫√(x^2+y^2)dxdy=∫dα∫ρ^2dρ(dα前的上限是π,下限是0;dρ的上限是1,下限是0)=∫
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
我不能传图片--||用换元法:x=r*cos(a);y=r*sin(a)∫∫sin(x^2+y^2)dxdy=∫∫r*sin(r^2)drda;其中r的积分限为:[0,2],a的积分限为:[0,2pa
换元法x=rcosax^2+y^2≤1所以0
极坐标下积分表达式变为r^2*r*dr*doo是极角关键是积分区域的变化首先积分区域在第一象限,此外x
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
设x=rcosty=rsint-π/2