二重积分xydxdy,其中x^2 y^2=1,x^2 y^2-2x=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:40:52
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r
用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
你把区域弄错了,y=0是x轴,你看成y轴了先y后x的次序:∫(下界0上界1)dx∫(下界0上界√x)xydy+∫(下界1上界2)dx∫(下界0上界2-x)xydy先x后y的次序:∫(下界0上界1)dy
这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉
被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
x+y=1的极坐标方程为:r=1x+y=2x的极坐标方程为:r=2rcosθ,即r=2cosθ2cosθ=1,则:cosθ=1/2,θ=π/3请自己画图因此两曲线所围区域可分为两部分,第一部分θ:0-
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
看图片,不懂再问.再问:谢谢,我先看看
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
y=x²+1 和y=2x的交点是(1,2)
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/