二重积分xye^x2 y2,其中D={(X,Y)}|a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:25:04
二重积分计算

先发一半.剩下的我慢慢算.因为确实不好积再问:嗯再答:我这有个思路。你也试试,当然我最后肯定给你做出答案,就是觉得这个题出的不好。简直是考察不定积分能力再问:极坐标做的。。再问:我应该直接表上去。这是

求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2

用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

先化简,再求值:(-3xy)2(x2+xy-y2)-3x2y2(3x2+3xy+y2),其中x=-43

原式=9x2y2(x2+xy-y2)-3x2y2(3x2+3xy+y2)=9x4y2+9x3y3-9x2y4-9x4y2-9x3y3-3x2y4=-12x2y4,当x=-43,y=-32时,原式=-1

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

怎么用二重积分的几何意义确定二重积分∫∫(a^2-x^2-y^2)^0.5 dxdy,其中D:x^2+y^2=0,y>=

被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2

求e^(x+y)的二重积分,其中D是闭区域|x|+|y|

对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y)  上下实

什么是XYE时代\世代----

小女只知道Y时代是指young的时代.

(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=-1,y=2.

原式=2x2y-2xy2-[-3x2y2+3x2y+3x2y2-3xy2]=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=2x2y-3x2y-2xy2+3xy2+3x2y2-3x2y

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

二重积分求∫∫[y/(1+x^2+y^2)^(3/2)]dxdy 其中 D:0

化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2

化简求值:[x(x2y2-xy)-y(x2-x3y)]÷3x2y,其中x=3,y=-1.

原式=[x3y2-x2y-x2y+x3y2]÷3x2y=(2x3y2-2x2y)÷3x2y=23xy-23;当x=3,y=-1时,原式=23×3×(-1)-23=-83.

化简并求值:(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=−12,y=2

原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2,当x=-12,y=2时,原式=-(−12)2×2+(-12)×22=-52.

二重积分啊!求二重积分

再问:求大神讲解下那个积分的上下限是怎么算出来的,,本人菜鸟啊,,,再答:对于直角坐标来说下方的函数为下限,上方的函数为上限对于极坐标来说若区域是只由一条曲线围成,则r的范围:下限是原点,上限是该曲线

二重积分

  被积函数是开口向下的椭圆抛物面,它与xoy面的交线是椭圆:4x^2+y^2=4 即 x^2+y^2/2^2=1.  如上图.易知 z=4-4x^2-y^2,当&nbs

化简求值(2X2-2y2)-3(X2y2+X2)+3(X2y2+y2),其中X=-1,y=2

(2X²-2y²)-3(X²y²+X²)+3(X²y²+y²)=2x²-2y²-3x²y&

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/