二阶对称矩阵的一个基

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:45:15
【matlab】能给我一个5阶以上的对称正定矩阵吗?

111111122222123333123444123455123456这是6阶的依此类推都是可以的

对称变换在标准正交基下的矩阵是是对称矩阵?

晕,动一下手,化一下就知道了.

证明任意n阶方阵都能写完为一个对称矩阵和一个反对称矩阵的和.

为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)再问:看不懂再答:哪里看不懂再问:B=(A+A‘’

怎样证明一个N阶可逆实矩阵A可由两个可逆的对称矩阵的乘积表示

利用实Jordan标准型可以证明任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分再问:能具体说下证明步骤吗?再答:先把A化到实Jordan标准型A=PJP^{-1},然后把J的

证明任一方阵可以写成一个对称矩阵与一个反对称矩阵的和

证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕

如果一个经过正交变换的矩阵得到的二次型矩阵是实对称的,那么原矩阵是实对称矩阵吗?

是的.P^-1AP=diag则A=PdiagP^-1由于P正交,所以P^-1=P^T所以A=PdiagP^T所以A^T=(PdiagP^T)^T=PdiagP^T=A.

矩阵A是一个n*n的对称矩阵,1.证明A+A‘也是对称矩阵.(' 表示转置)

证明:1.因为(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'是对称矩阵2.二次型x'Ax的矩阵即0.5(A+A')所以x'Ax=x'(0.5*(A+A'))x3.由(2)知x'(0.

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

二阶矩阵的伴随矩阵公式

主对调,副换号.注:主-->主对角线;副-->副对角线

请问,怎么用matlab生成一个随机对称的矩阵

你看看这个咋样,矩阵大小可以自己调,inf出现的比例可以调里面的rndN=10;%矩阵大小N*Nselect=[5:10,inf];a=zeros(N,N);fori=1:Nforj=1:i;ifj=

英语翻译要翻译的词汇如下:\x1e实对称矩阵,二次型,正定矩阵,半正定矩阵,负定矩阵,半负定矩阵,不定矩阵,二次曲线,二

保证正确无误-----------Realsymmetricmatrix,Quadraticform,Positivedefinitematrix,Positivesemidefinitematrix

【matlab】谁给我一个5阶以上的对称正定矩阵

按照杨辉三角形写:111111123456136101521141020355615153570126162156126252算完你就知道它的Cholesky因子是什么了

证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.

题:证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.证:以下A‘表示方阵A的转置.设方阵A=N+Z,其中N为对称矩阵,Z为反对称矩阵,即:N'=N,Z'=-Z

设一个对称矩阵有可逆矩阵,证明它的逆矩阵也是对称矩阵

证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)

一个矩阵是不是对称矩阵预期能不能化成对角矩阵存在怎么样的关系?

一般对角化都是针对对称矩阵如果矩阵A不对称,令bij=bji=(aij+aji)/2,可得到对阵矩阵B,再进行对角化.这种变换对于二次型系数矩阵来说,可以在不改变二次型的情况下求解对角矩阵.

求证 :任意一个n阶方阵都可以表示成一个对称矩阵和一个反对称矩阵之和的形式

证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕

对称变换 在一组标准正交基下的矩阵是对称矩阵

证明在某组标准正交基下的矩阵为对称阵就相当于证明了在任意一组标准正交基下的矩阵为对称阵了.设T为这个对称变换,α1α2α3...αn,β1β2β3...βn分表为两组标准正交基,α到β的过渡阵为Q,标

设A是一个3阶实对称矩阵 ,证明A的特征根都是实根

如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数

线性代数关于是对称矩阵的一个问题

首先A非奇异,A*=det(A)*A^{-1}=-2A^{-1}所以A和A*的特征向量相同再注意A没有重特征值,特征向量具有一定的唯一性,这样就得到(λ3,β0)是A的特征对,于是λ3*λ0=-2接下

已知二阶矩阵的逆矩阵,怎么求二阶矩阵

这与已知A求A^-1是一样的这是因为A=(A^-1)^-1A=abcd利用公式A^-1=(1/|A|)A*其中:|A|=ad-bcA*=d-b-ca注记忆方法:主对角线交换位置,次对角线变负号