二阶对称矩阵的一个基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:45:15
111111122222123333123444123455123456这是6阶的依此类推都是可以的
晕,动一下手,化一下就知道了.
为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)再问:看不懂再答:哪里看不懂再问:B=(A+A‘’
利用实Jordan标准型可以证明任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分再问:能具体说下证明步骤吗?再答:先把A化到实Jordan标准型A=PJP^{-1},然后把J的
证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕
是的.P^-1AP=diag则A=PdiagP^-1由于P正交,所以P^-1=P^T所以A=PdiagP^T所以A^T=(PdiagP^T)^T=PdiagP^T=A.
证明:1.因为(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'是对称矩阵2.二次型x'Ax的矩阵即0.5(A+A')所以x'Ax=x'(0.5*(A+A'))x3.由(2)知x'(0.
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
主对调,副换号.注:主-->主对角线;副-->副对角线
你看看这个咋样,矩阵大小可以自己调,inf出现的比例可以调里面的rndN=10;%矩阵大小N*Nselect=[5:10,inf];a=zeros(N,N);fori=1:Nforj=1:i;ifj=
保证正确无误-----------Realsymmetricmatrix,Quadraticform,Positivedefinitematrix,Positivesemidefinitematrix
按照杨辉三角形写:111111123456136101521141020355615153570126162156126252算完你就知道它的Cholesky因子是什么了
题:证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.证:以下A‘表示方阵A的转置.设方阵A=N+Z,其中N为对称矩阵,Z为反对称矩阵,即:N'=N,Z'=-Z
证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)
一般对角化都是针对对称矩阵如果矩阵A不对称,令bij=bji=(aij+aji)/2,可得到对阵矩阵B,再进行对角化.这种变换对于二次型系数矩阵来说,可以在不改变二次型的情况下求解对角矩阵.
证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕
证明在某组标准正交基下的矩阵为对称阵就相当于证明了在任意一组标准正交基下的矩阵为对称阵了.设T为这个对称变换,α1α2α3...αn,β1β2β3...βn分表为两组标准正交基,α到β的过渡阵为Q,标
如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数
首先A非奇异,A*=det(A)*A^{-1}=-2A^{-1}所以A和A*的特征向量相同再注意A没有重特征值,特征向量具有一定的唯一性,这样就得到(λ3,β0)是A的特征对,于是λ3*λ0=-2接下
这与已知A求A^-1是一样的这是因为A=(A^-1)^-1A=abcd利用公式A^-1=(1/|A|)A*其中:|A|=ad-bcA*=d-b-ca注记忆方法:主对角线交换位置,次对角线变负号