以rt三角形abc的ac边为直径作圆o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:57:40
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R
因为∠dab=∠cae角ABD=角ACE所以Rt三角形ABD和Rt三角形ACE相似所以bp:pc=dp:pe因为bp=pc所以dp=pe所以三角形PDE为等腰三角形不错吧?
总共面积为:0.5+1+2+4+8=15.5
首先证明EF为圆O的切线连接OE,角EHF=FEF=DHOODH=OEHODH+OHD=90OEF=OEH+HEF=90故EF为圆O切线连接OG三角形CGO全等于EGOGC=GE角B+CAB=90°角
解(1)证明:连接OD,OE,因为E为BC的中点,O为AB的中点所以OE平行与AC,所以∠EOB=∠BAC又∠DOE=∠ADO=∠BAC所以∠EOB=∠DOE在三角形DOE和三角形EOB中,DO=BO
当∠C=90度时,内切圆的半径r=1/2×(AC+BC-AB)因为AC+BC=7,r=1,所以AB=5,因为面积S=1/2×r×l(其中r、l分别是内切圆的半径和三角形的周长)三角形周长l=AB+BC
∵(AB+BC)²=AB²+BC²+2AB·BC,(平方和公式,勾股定理)17²=12²+4(½AB·BC),∴rt△ABC面积=½
旋转后的图形是由两个底面积相等的圆锥构成的圆锥的底面半径R就是AC边上的高,不妨设为R=BER=BE=3×4/5=2.4表面积S=πRL1+πRL2=πR×BC+πR×AB=7πR体积V=πR
每个新等腰直角三角形,斜边为直角边的根号2倍,第5个为,根号2的5次方,所以答案为:4倍根号2.
正方形的面积=AB^2=AC^2-BC^2=16*16-12*12=112式中的(AB^2=AC^2-BC^2)就是勾股定理
整个圆锥的面积为301.5929底面圆的面积为113.0973侧面面积为188.4956
连接cdcd垂直于abac*cb=cd*abcd=12/5ad^2=ac^2+dc^2ad=9/5bd=5-9/5=16/5
连接CD∵AC为⊙O直径∴∠CDA=90°(圆周角性质)即AB⊥CD由勾股定理可知:AB=5cm由面积相等可知CD=AC×BC/AB=2.4cm∴根据勾股定理,AD=1.8cm
证明:连OD、BD因为AB是直径∴∠ADB=∠BDC=90°E为BC边中点∴DE=BE(斜边上的中线等于斜边的一半)∴∠EDB=∠EBDOD=OB∴∠ODB=∠OBD∴∠ODB+∠EDB=∠OBD+∠
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+
∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×