以三角形ABC的三边为边分别作等边三角形ACD,三角形ABE,三角形BCF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:48:06
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

已知Rt△ABC的三边长分别为3,4,5.分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积.

答案如下图所示,请尽快答复,如果你对我的答案满意,请予以采纳,谢谢支持!

分别以直角三角形ABC的三边为边,向外作三个等边三角形,其面积分别为S1,S2,S3

设S1,S2分别是以两直角边a,b为边的等边三角形面积,S3是以斜边c为边的等边三角形面积,则s1=(1/4根号3)a的平方s2=(1/4根号3)b的平方s3=(1/4根号3)c的平方所以S1+S2=

三角形ABC的三边长分别为3.4.5.与三角形ABC相似三角形A1B1C1,的最长边的边...

相似三角形的边长是成正比的,所以可以得出两个长边比和两个短边比相等,设短边为X,则有X:3=15:5及X=9则A1B1C1的最短的边长为9

如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,

(1)在△ABC和△DBE中AB=AD∠ABC=∠EBC-∠EAB,∠DBE=∠DBA-∠EBA因为∠EBC=∠DBE=60°所以∠ABC=∠DBEBC=BE因此△ABC≌△DBE,DE=AC.△AC

分别以RT三角形abc的三边为直径向外作3个半圆,请说明S1+S2=S3

设两直角边为x,y,斜边为zS1=1/2πx^2S2=1/2πx^2S3=1/2πz^2因为是直角三角形,由勾股定理得:x^2+y^2=z^2所以:S1+S2=,1/2πx^2+1/2πx^2=1/2

△abc的三条边长分别为abc 以它的三边中点为顶点组成一个新三角形以这个新三角形

1△abc的三条边长分别为abc:告诉了边长.2以它的三边中点为顶点组成一个新三角形:△abc内有一个三角形,先叫做△def吧3以这个新三角形.所以,你问的问题是什么啊?

分别以直角三角形ABC的三边为边向外作三个正三角形,面积为S1 S2 S3,确定S1 S2 S3的关系,并加以证明

设三遍分别为abc分别对应S1S2S3S1=四分之根三乘以a的平方同理可求S2S3所以S1:S2:S3=a的平方:b的平方:c的平方请采纳3Q

以三角形ABC的边AB,AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断三角形ABC与三角形AEG面积

△ABC与△AEG面积相等,过点C作CM⊥AB于M,过点G作GN⊥EA,交EA延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE和四边形ACFG都是正方形,所以∠BAE=∠CAG=90°,AC

在Rt三角形ABC中,角C=90度,AC=b,BC=a.分别以三角形的三边为边长作正方形,三个正方形的位置如图所示

如图当AC=CB时     S1=o可以算出S3=1/2abS4=1/2abS2=1/2ab则s1+s2+s3=0+1/2ab+1/2ab=ab(s1

以直角三角形ABC三边为直径分别作三个半圆,已知以AC为直径的半圆面积为s1,以BC为直径半圆面积为S2

1、依题意,可知S1=(1/4)*AC²πS2=(1/4)*BC²π则S1+S2=(1/4)*(AC²+BC²)π又AB²=AC²+BC&#

如图,以三角形ABC的三边为边,分别做三个等边三角形.1)求证:四边形ADEF是平行四边形;

(1)证明:∵△ABD,△BCE,△ACF都是等边三角形,∴AB=BD=AD,∠ABD=∠EBC=∠BCE=∠ACF=60°,BC=BE=CE,AC=AF=FC.∵∠ABD=∠EBC=60°,∴∠AB

三角形abc的三边长分别为5,12,13,分别以三边为直径向上作三个半圆,求阴影部分S1部分的面积

取AB中点为O,连接OC,玄长是12,可以算出13为直径扇形AOC的面积.三角形AOC为等腰三角形,过O点做OD垂直于AC,OD长为2.5很容易算出三角形AOC的面积12为直径的半圆的面积-[13为直

如图,分别以三角形ABC的三边为直径向外作半圆,用S1,S2分别表示两个小半圆的面积,S3表示大半圆的面积

根据圆面积公式:S1=1/2π(1/2AB)^2,S2=1/2(1/2BC)^2,S3=1/2(1/2AC)^2,∵S1=S2+S3,(S1最大)∴1/8πAB^2=1/8πBC^2+1/8πAC^2

如图,根据图形解答下列问题:1,以三角形ABC的三边为边分别作等边三角形ACD,三角形ABE,三角形BCF,判断四边形A

1.证明:首先角DBA=角EBC=60度,那么同时减去角EBA也相等,那么角DBE=角ABC而BD=ABBE=BC所以三角形DBE全等于三角形ABC所以DE=AC而AC=AF所以DE=AF又叫角ECF

如图,以RT三角形ABC(∠C=90)的三边为直径向外作半圆,其面积分别为S1,S2,S3.是说明

是不是?证明S1=S2+S3.∵AB²=AC²+BC²又S1=π×AB²/8  S2=π×BC²/8  S3=