伴随矩阵等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:50:06
线性代数:一个矩阵的伴随矩阵的逆矩阵等于什么

利用Aadj(A)=det(A)I这个关系去推导你想要的结论就行了,你问的这些都能推导出来(可以先假定A可逆)

k次伴随矩阵等于伴随矩阵的k次方

由性质(AB)*=B*A*得(AA...A)*=A*A*...A*(k个)所以有(A^k)*=(A*)^k.

线性代数中 伴随矩阵的逆矩阵等于逆矩阵的伴随矩阵证明中的问题

哎--换一下想法不就可以了吗因为|B|B^-1=B*所以当B=A^-1得时候就有|A^-1|(A^-1)^-1=(A^-1)*=|A^-1|A=(A^-1)*不明白的话继续问我就可以了

一个矩阵的伴随矩阵的伴随矩阵等于该矩阵么?

一般有(A*)*=|A|^(n-2)A.所以不一定有(A*)*=A.

一个矩阵的逆的伴随矩阵是否等于它的伴随矩阵的逆矩阵

相等.由AA*=|A|E知(A*)^-1=(1/|A|)A.由A^-1(A^-1)*=|A^-1|E知(A^-1)*=|A^-1|A=(1/|A|)A所以(A*)^-1=(A^-1)*

A是可逆矩阵,证明A的伴随矩阵的逆等于A的逆的伴随矩阵

由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等

矩阵的乘积的伴随等于其伴随的乘积吗?

当A,B不可逆时,用到多项式理论你看看吧:再问:当x充分大时,A(x)、B(x)都可逆怎么证明?再答:x充分大,则A(x)的主对角线上元素充分大,考虑行列式的定义即知A(x)可逆再问:为什么?不懂啊再

矩阵伴随的转置等于矩阵转置的伴随

(A*)^T的第(ij)元素=A*的第(ji)元=aji的代数余子式=A^T的第(ij)元的代数余子式=(A^T)^*的第(ij)元.

为什么伴随矩阵乘以原矩阵等于原方阵的行列式乘以单位矩阵?

还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵

伴随矩阵的伴随矩阵怎么求

设A是N阶可逆矩阵,A*=|A|A-1,所以A**=(|A|A-1)*=|A|N-1A/|A|=|A|N-2A也就是A的行列式的N-2次方倍的A

伴随矩阵

(1)当A,B都可逆时(AB)*=|AB|(AB)^-1=|A||B|B^-1A^-1=(|B|B^-1)(|A|A^-1)=B*A*.当A,B不可逆时,令A(x)=A+xE,B(x)=B+xE当x充

伴随矩阵的伴随矩阵等于什么?非常急,

等于A的行列式的n-2次方再乘以A,可以有概念推导出来的,请问你是考研么?

如何证明方阵A的行列式等于0,则它的伴随矩阵的行列式也等于0>

证明:假设|A*|≠0由A*可逆因为AA*=|A|E=0等式两边右乘(A*)^-1则得A=0故A*=0所以|A*|=0矛盾.

A,B皆为n阶方阵,B不为0矩阵且AB等于0矩阵,求A伴随矩阵的秩.

因为AB=0所以B的列向量都是Ax=0的解又因为B不为0所以Ax=0有非零解所以|A|=0所以r(A)

A的伴随矩阵的伴随矩阵为什么等于A的行列式的n-2次方乘A

按下图可以严格证明这个性质.请采纳,谢谢!

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-

矩阵A里元素和其伴随矩阵非该元素的代数余子式相乘为什么等于0

ai1Aj1+……+ainAjn=|……………………|←(这是一个行列式)|ai1………………ain|←(第i行)|………………………||ai1………………ain|←(第j行)←(左边式子的含义就是把

矩阵乘积的伴随等于伴随的乘积吗?

楼主,你看看吧,我也不知道对错.(ab)*=|ab|(ab)^-1=|ab|((b^-1)(a^-1))=|a||b|((b^-1)(a^-1))a*b*=|a|(a^-1)|b|(b^-1)由于ab