,已知正方形ABCD中,E是BC的中点,F是CD上一点,且FD=3CF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:49:23
AE⊥BF则∠AMB=90°∠ABM+∠BAE=90°∠ABM+∠FBC=90°所以∠BAE=∠FBC在rt△BCF和RT△ABE中∠BAE=∠FBC∠BCF=∠EBA=90°正方形ABCD则AB=B
证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌
(1)证明:连BD,AC交于O.∵ABCD是正方形∴AO=OCOC=AC/2取PC中点M.连EM.则EM是三角形PAC的中位线.EM∥AC且EM=AC/2∴EM∥OC且EM=OC连EO.则EOCM是平
分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离
有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!
连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
易知角ABE=30度,AB=BE,所以角AEB=75度.同理角DEB=75度;又角BEC=60度,所以角AED=360度—角AEB—角DEB—角BEC角AED=150度
在正方形ABCD中∵DF⊥AE∴∠DFE=∠DFA=90°∴∠DAF+∠ADF=90°∵∠B=90°∴∠BAE+∠BEA=90°∵∠DAB=90°∴∠BAE+∠DAE=90°∴∠DEA=∠DAE∴∠B
证明:在正方体中,DD'⊥平面ABCD∴DD'⊥AC,在正方形ABCD中,AC⊥BD∴AC⊥平面BDD'B'因此,AC⊥OE设正方体的边长为2,∴DO=BO=√2,BE=EB'=1∴D'O=√6,OE
不用作辅助线.∵四边形ABCD是正方形,∴∠ADC=∠ABC,BC=CD,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,,∵E是BC中点,∴BE=CE,∵AB=DC,∠ABC=∠ACD.∴
解①:设AE=a,则AB=2a,根据勾股定理:AE²+AB²=BE²a²+(2a)²=6²5a²=36a²=36/5a=
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
如图,∵在直角△DCE中,DE=2,CE=1,∠C=90°,∴由勾股定理,得CD=DE2-CE2=22-12=3,∴正方形ABCD的面积为:CD•CD=3.故选:B.
根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5
连接AC交正方形于Q再连接QE,利用三角形的中位线可得再问:步骤求急啊亲!再答:再答:看得清不再答:不然我就给你打字过来再问:看得清谢谢啦再问:第二问,求证平面PBC垂直平面PCCD再问:最后是PCD