,已知正方形ABCD中,E是BC的中点,F是CD上一点,且FD=3CF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:49:23
已知,正方形abcd中,e,f分别是bc,dc边上的点,ae垂直bf,求证:ae=bf

AE⊥BF则∠AMB=90°∠ABM+∠BAE=90°∠ABM+∠FBC=90°所以∠BAE=∠FBC在rt△BCF和RT△ABE中∠BAE=∠FBC∠BCF=∠EBA=90°正方形ABCD则AB=B

如图,已知正方形ABCD中,边BC,CD的中点分别是E,F,求证:AE⊥DF

证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证(1)PC

(1)证明:连BD,AC交于O.∵ABCD是正方形∴AO=OCOC=AC/2取PC中点M.连EM.则EM是三角形PAC的中位线.EM∥AC且EM=AC/2∴EM∥OC且EM=OC连EO.则EOCM是平

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别

分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别

有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB

好评给我把再答:再问:答案拿来再答:发了再问:采纳了

已知点E在正方形ABCD中,三角形EBC是等边三角形,求角AED的度数.

易知角ABE=30度,AB=BE,所以角AEB=75度.同理角DEB=75度;又角BEC=60度,所以角AED=360度—角AEB—角DEB—角BEC角AED=150度

已知正方形ABCD中,AB=2,E是BC的中点,DF⊥AE于F

在正方形ABCD中∵DF⊥AE∴∠DFE=∠DFA=90°∴∠DAF+∠ADF=90°∵∠B=90°∴∠BAE+∠BEA=90°∵∠DAB=90°∴∠BAE+∠DAE=90°∴∠DEA=∠DAE∴∠B

已知正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心,(1)求证:OE⊥面ACD1

证明:在正方体中,DD'⊥平面ABCD∴DD'⊥AC,在正方形ABCD中,AC⊥BD∴AC⊥平面BDD'B'因此,AC⊥OE设正方体的边长为2,∴DO=BO=√2,BE=EB'=1∴D'O=√6,OE

已知:在正方形ABCD中,E是BC的中点,F是AC、DE的交点,求证:AE⊥BF.

不用作辅助线.∵四边形ABCD是正方形,∴∠ADC=∠ABC,BC=CD,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,,∵E是BC中点,∴BE=CE,∵AB=DC,∠ABC=∠ACD.∴

如图,已知E是正方形ABCD中AD的中点,BE=6.求①AE

解①:设AE=a,则AB=2a,根据勾股定理:AE²+AB²=BE²a²+(2a)²=6²5a²=36a²=36/5a=

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

已知正方形ABCD中,E是BC上一点,DE=2,CE=1,则正方形ABCD的面积为(  )

如图,∵在直角△DCE中,DE=2,CE=1,∠C=90°,∴由勾股定理,得CD=DE2-CE2=22-12=3,∴正方形ABCD的面积为:CD•CD=3.故选:B.

已知正方形ABCD的边长是2,E是CD中点,P为正方形ABCD上的一个动点,动点P从A出发,沿A,B,C,E运动,若P经

根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥B

解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥B

解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

在正方形ABCD中,已知AB等于2,E是BC的中点,DF垂直与AE于点F,

第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5

已知四棱锥P-ABCD中,PD垂直面ABCD,ABCD是正方形,E是PA中点,求PC平行平面EBD

连接AC交正方形于Q再连接QE,利用三角形的中位线可得再问:步骤求急啊亲!再答:再答:看得清不再答:不然我就给你打字过来再问:看得清谢谢啦再问:第二问,求证平面PBC垂直平面PCCD再问:最后是PCD