例题对称矩阵,求正交矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:52:14
线性代数中对称矩阵的正交化.求正交阵P使为对角阵

求特征向量,再正交化,单位话,就得到了

特征向量相互正交的矩阵一定是对称矩阵吗?一定是实对称矩阵吗?

不是的.再问:�����أ������Ҹ�������〜������ô��Ӧ�ã�再答:A=(1/3)*12-22-2-1212A�������,�����ǶԳƾ���

线性代数实对称矩阵特征向量正交

①书上的基本定理肯定是没问题的;②a,b分别是A的特征值-2,2的对应的特征向量a,b是B特征值为1的特征向量【到此都没问题,问题在下面】③【注意:】此时求得矩阵B的特征值为1的特征向量为(1,1,0

实对称矩阵的正交矩阵唯一吗

你是说P^-1AP=对角矩阵中的正交矩阵P吧它不唯一.P的列向量来自相应齐次线性方程组的基础解系而基础解系不是唯一的所以P也不唯一

特征值均为实数的正交矩阵为对称矩阵

要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.

正交矩阵是实数矩阵吗?正交矩阵是实对称矩阵吗?

正交矩阵定义为:A*A^T=E,则称A为正交矩阵.(注:E为单位矩阵).正交矩阵不一定是实数矩阵,例如:A的第一行为:i,√2;第一行为:√2,-i.其中,i为虚数.则有:A*A^T=E.实对称显然也

正交矩阵一定是对称矩阵吗?

不一定,正交矩阵的意思是矩阵的转置矩阵与逆矩阵相等对称矩阵是转置矩阵等于本身俩个不能等同

求正交矩阵 

这个麻烦请稍候...再答:解:|A-λE|=1-λ242-2-λ2421-λr1-r3-3-λ03+λ2-2-λ2421-λc3+c1-3-λ002-2-λ4425-λ=-(3+λ)[(-2-λ)(5

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

特征矩阵是正交矩阵的矩阵是不是一定是实对称矩阵?

我记得应该是特征向量正交和规范矩阵是充要关系.不一定是实对称.当然反过来是对的(谱分解定理)

线性代数求一个正交的相似变化,将对称矩阵A转化为对角矩阵.

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r3(只能尝试这样,-r3是后来发现正好凑出(1-λ)公因子)0(1-λ)(2-λ)/2-2(1-λ)-21-λ-20

线性代数,二次型,标准型,正交矩阵,对称矩阵

呵呵还没人来做那就麻烦麻烦我吧^-^不过这题目真的麻烦(1)A=123222321(2)第1步:求A的特征值.|A-λE|=λ(λ+2)(6-λ).特征值为0,-2,6.分别求出特征值对应的特征向量:

非对称矩阵能正交化吗?

可以,用施密特(schmidt)正交化方法.

什么是正交矩阵,和实对称矩阵有什么不同?

1、正交矩阵:正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I2、实对称矩阵:对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A再问:谢谢您的帮助,那么请问单位化、标准化和规范

若A实对称矩阵,T是正交矩阵,证明T^-1AT是对称矩阵

(T^-1AT)的转置=T的转置*A的转置*T^-1的转置因为T是正交阵,所以T的转置=T-1因为A是实对称阵,所以A的转置=A则(T^-1AT)的转置=T的转置*A的转置*T^-1的转置=T^-1*

线代实对称矩阵特征向量正交的问题,

假设一个三阶实对称矩阵,有三个特征值3,3,1,又已知对应特征值为1的特征向量(1,1,2),这个时候求特征值为3的特征向量可以直接利用正交的性质列出方程x1+x2+2x3=0求得的基础解系就是对应特

线代 试求一个正交的相似变换矩阵,并将对称矩阵对角化

这个写起来好麻烦啊,这个是真正的解法,但是我一直举得,求出了前两个,第三个向量,我觉得可以直接用两个向量叉乘一下得出,反正第三个向量和前两个垂直

线性代数 正交矩阵是否是对称矩阵?

不是再问:可问题是:假设用A'表示A的转置因为|A|^2=|A||A|=|AA||A|^2=|A||A'|=|AA'|=|E|A的逆=A'所以AA=E,A的逆=A=A‘,对称矩阵!如何解释?再答:得不