假如f(x)至少有一个根 他的导数是2次方程 b^2-4ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:57:58
已知函数f(x)=2x^2+(4-m)x+4-m,g(x)=mx,若对于任意实数X,f(x)与g(x)的值至少有一个为正

当m=0时,g(x)=0  f(x)=2x^2+4x+4=2(x+1)^2+2>0恒成立 符合题意 当m>0时,  g(x)=m

已知函数f(x)=ax^2+2x+1(a?R)求方程f(x)=0至少有一个正根,a的取值范围?

解析:要想直接说清楚a的取值范围不仅麻烦,而且易于出错,相比而言,分类讨论要直接一些.①若a=0,则f(x)=2x+1,不合题意②若a>0,且假设f(x)=0有根,则由韦达定理有x1x2=1/a>0(

已知f(x)在R上为奇函数,函数F(x)=f(tanx)求证 方程F(x)=0至少有一个实根

方法一:(这是一个全面且说服力强的通证法)因为f(x)在R上为奇函数,所以肯定有f(x)=0,即可得f(x)在实数范围内至少存在一个根.又因为f(x)的定义域为R,且有F(x)=f(tanx),而ta

证明方程x^5-3x-1=0至少有一个根介于1和2之间,解此题第一步是令f(x)=x^5-3x-1,则f(x)在闭区间[

函数在区间上没有间断点那就是连续的,间断点即在某个点取不到函数值或者趋于无穷大,显然在这里,f(x)=x^5-3x-1在闭区间[1,2]上f(x)没有任何没有定义的点或者趋于无穷大的点,所以f(x)是

已知函数F(X)=KX^2-(4-K)X+1/2,G(X)=KX,若对于任意实数X,F(x)与G(X)的值至少有一个正数

的确是联立然后分类谈论.首先k不等于0.否则G(x)=0,F(X)=-4X+1/2,当x大于等于1/8时F(x)<=0当k<0的时候,抛物线开口向下,总会出现F(x)与G(X)的值都小于零

关于x的方程ax²+2x+1=0至少有一个负根

当a=0时,方程有一个负根当a≠0时,判别式△≥0,即4-4a≥0,得a≤1(1)当0<a≤1时,函数ax²+2x+1的对称轴为x=-1/a<0,图像必然与想轴负半轴有交点,即方程有负根.(

已知函数f(x)=2x^2+(4-m)x+4-m,g(x)=mx,若对于任一实数f(x)与g(x)的值至少有一个是正数,

1.当m=0时,g(x)=0,f(x)=2x²+4x+4>0,符合条件.2.当m>0时,g(x)在x≤0时不为正数,故必须f(x)>0,x≤0∵f(x)的对称轴为x=m/4-1∴m≥4时,f

帮bang我做道题设f(x)是以2为周期的连续函数,证明f(x)-f(x-1)=0在任何长度为1的区间上至少有一个根

首先,明确一下,你所说的区间必须是闭区间.若是开区间,这个结论不成立.下面就闭区间的情况证之.证明:用反证法.假设存在一个长度为1的区间[k,k+1],使得f(x)-f(x-1)=0在它上面无根.定义

1.试证方程 f(x)=x.2x-1 至少有一个小于1的实根 2.设x>0 ,证明 x/(1+x)

第一个方程到底是什么意思啊?能详细一点不?再问:试证方程f(x)=x.2x-1至少有一个小于1的实根就这些,,不会的话你帮我看看第二个吧,,感谢再答:1.f(x)在[0,1]上连续,又f(0)=-1,

已知函数f(x)=x^2+ax+3-a,当x属于[-2,2]时,函数至少有一个零点,求a的范围

楼上不对,没有考虑有两个零点的情况.f(x)=x^2+ax+3-a=0得a(x-1)=-(x^2+3)=-(x-1)^2-2(x-1)-4,当x∈[-2,1)时,a=-(x-1)-4/(x-1)-2≥

一道不等式的证明题!设f(x)=x^2+px+q,则f(1)的绝对值,f(2)的绝对值,f(3)的绝对值中是否至少有一个

用反证法:设f(1)的绝对值,f(2)的绝对值,f(3)的绝对值中都小于1/2则|f(1)|+2*|f(2)|+|f(3)|=f(1)-2f(2)+f(3)=(1+p+q)-2(4+2p+q)+(9+

已知函数f(x)=x^2+ax+3-a,当x属于[-2,2]时,函数至少有一个零点,求a的范围.

不妨设t∈[-2,2],且f(t)=0.则t²+at+3-a=0.a(1-t)=t²+3=(1-t)²-2(1-t)+4.显然,t≠1.∴a+2=(1-t)+[4/(1-

已知函数f(x)=mx^2+(m-3)x+1的图像与x轴至少有一个在原点的右侧,m的取值范围

若m=0则f(x)=-3x+1=0x=1/3>0成立m不等于0方程f(x)=0有解则(m-3)^2-4m>=0m^2-10m+9>=0m>=9,m0则取+号的解大,则只要他大于0即可[-(m-3)+√

设f(x)定义在R上,并且对任意的x,有f(x+2)=f(x+3)-f(x+4),求证f(x)是周期函数,并找出他的一个

∵f(x+2)=f(x+3)-f(x+4)(1)∴f(x+3)=f(x+4)-f(x+5),将f(x+3)代入(1)式,则得f(x+2)=f(x+4)-f(x+2)-f(x+4)f(x+2)=-f(x

已知f(x)=x3-3ax2+3x+1,若f(x)在区间(2,3)中至少有一个极值点,求a的范围

已知f(x)=x3-3ax2+3x+1,若f(x)在区间(2,3)中至少有一个极值点,求a的范围导函数f'(x)是一条抛物线:f'(x)=3x²-6ax+3原函数有极值点,翻译到导函数就变成

已知函数f(x)=2mx^2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正

当m>0时,g(x)=mx中x>0有g(x)>0,x≤0时有g(x)≤0,此时只要保证x≤0时,f(x)>0f(x)=2*m*x^2-2*(4-m)*x+1>0(x≤0)中a=2m>0,b=-2(4-

已知函数f(x)=2^x-1/2^+1求证:方程f(x)-Inx=0至少有一个根在区间(1,3)

设F(x)=f(x)-lnx=(2^x-1)/(2^x+1)-lnx,则F(1)=f(1)-ln1=(1/3)-0=1/3>0,F(3)=f(3)-ln3=7/9-ln3,∵7/9