偏导数存在且连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:32:55
这个问题回答起来略麻烦再答:再答:再答:再答:分别是证明和反例,你可以自己慢慢看再答:连续和可偏导与连续可偏导是不同的再答:连续和可偏导与连续可偏导是不同的再问:第一张就是它们之间的关系我弄清楚了,可
1.一元函数可微分与可求导比较接近二元函数的话,你想象一张平面,在上面任何一个方向都可以求导,就接近可微分了;而偏导数存在仅仅是某几个方向可以求导2.可微分->偏导数存在可微分->连续偏导数存在(比如
可微的要求比可导严格,可导是对某个自变量而言,而可微是对所有自变量而言,多元函数自变量是多个,要可微,必须函数对所有自变量在改点处都可导.从图像的角度看,可导是从一个方向上的,而可微是从多个方向上的.
连续就一定存在,存在不一定连续啊
偏导存在未必连续,但如果能全微分也必定连续再问:那么偏导数存在,且偏导数连续,可以推出来函数连续吗?再答:偏导连续那就可以全微分了,可微了原函数自然连续了再问:一个函数偏导且连续是函数可微的充分不必要
可微必定连续且偏导数存在连续未必偏导数存在,偏导数存在也未必连续连续未必可微,偏导数存在也未必可微偏导数连续是可微的充分不必要条件
当然推不出来了.连一元的情形都不行(连续未必可导),多元就更不可能了.
楼上说的是一元函数的结论,不适用于多元函数.多元函数连续不能推出偏导数存在,反之偏导数存在也不能推出连续.偏导数存在且偏导数连续==>可微==>连续(这个连续是指没求导的函数).这个是正确的
函数连续,偏导数存在,不能推出可微,还需要偏导连续才能推出可微但是可微必连续必可偏导再问:这些我是知道的,但我主要没想清楚能不能由偏导数的连续来推函数连续,就跟一元函数一样…再答:我主要没想清楚能不能
多元函数的偏导数存在和连续没有一定的关系,偏导数存在不一定连续,连续不一定偏导数存在,详细的可以看看高等数学第二次关于骗到连续的知识
A骗到连续可以推出全微分存在但全微分只推得了偏导存在,不能推出偏导连续
逆命题不成立,反例是:f(x,y)=0,当x是无理数;f(x,y)=x^2,当x是无理数.可以验证,f(x,y)在(0,0)点处可微分,但偏导数仅在(0,0)点以外的地方都不在,更不用说连续了.但是以
定义一个分段函数:f(x)=x^2*sin(1/x),(x≠0)=0,(x=0)这个函数,它在定义域的每一点都可导,但是它的导数不连续.参考:http://zhidao.baidu.com/link?
z=f(xlny,x-y)əz/əx=lnyf1′+f2′əz/əy=(x/y)f1′-f2′再问:�жϼ����(n��1����)(-1)^n/���(n(
首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函
说明一个命题不正确是不需要证明的,只需举一个反例即可,因为存在函数可微而偏导数不连续的情况,所以多元函数可微不能推出偏导数存在且连续.
这其实是连续的一个证明问题左右极限相等,则偏导存在.但此时的极限不一定等于该点的导数值,明白吗?证明偏导数连续,则是要证明左右极限相等并且要等于该点的偏导数值.也就是说:在那点的偏导数等于左右极限这句
把二元函数想像成平面上的函数,则连续需要在各个方向(横的,竖的,斜的)直线上都连续;而对x的偏导数存在只说明函数限制到每条横的直线(y=a)上后作为x的一元函数可导,对y的偏导数存在只说明函数限制到每