先化简再求值根号ab b分之a 根号ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:33:52
把ab值换算出来得6;首先第一个式3分之2根号18ab根号18ab=6根号3所以第一式为4根号3ab根号ab分之2二式值为18分之根号6两式分别除以根号2分之a=根号2分之3相减得27分之(36根号6
=1/(a+2)+4/(a+2)(a-2)=(a-2+4)/(a+2)(a-2)=1/(a-2)=1/(2+√3-2)=√3/3
答案是4先通分,分子变成a^2-b^2,分母是((根号ab)+b)(a-根号ab)分母前面提出根号b,后面提出根号a,分子写成(a+b)(a-b),分母变成根号下ab乘以(a-b)谢啦再问:(分母前面
∵a=2-√3,∴1-a=√3-1>0a-1分之1-2a+a2-a分之根号a2-2a+1-a分之1=(a-1)^2/(a-1)-(1-a)/a-1/a=a-1-1/a+1-1/a=a-2/a=2-√3
2a√(3ab³)-b/6*√(27a³b³)+2ab√(3ab/4)=2ab√(3ab)-a²b/2*√(3ab)+ab√(3ab)=3ab√(3ab)-a&
√a/b+√b/a∵a+b>0ab>0∴a>0,b>0∴√a/b+√b/a=∨ab/b-√ab/a=(a+b)√ab/ab=√6
2/(a-1)+(a-2)²/(a+1)(a-1)×(a+1)/(a-2)=2/(a-1)+(a-2)/(a-1)=a/(a-1)当a=1+√2时原式=(1+√2)/√2=√2/2+1
a=1/(2+√3)=2-√3原式=(a+1)(a-1)/(a-1)-√(a-1)²/[a(a-1)]=a+1+(a-1)/[a(a-1)]=a+1+1/a=2-√3+1+1/(2-√3)=
:(a+根号3)(a-根号3)-a(a-6)=a²-3-a²+6a=6a-3当a=1/2+1/√2时原式=3+3√2-3=3√2
a=2/﹙1-√3﹚=﹣﹙√3+1﹚﹙a²-1﹚/﹙a-1﹚+√﹙a²+2a+1﹚/﹙a²+a﹚-1/a=a+1-1/a-1/a=a+1-2/a=﹣√3-1+1+2/﹙√
首先你表达的不太清楚,我理解为下面的算式,那里不对提出,1,原式=a√(1/a)-1/a*√4a^3-a^2*4/√a^3=√a-2√a-4√a=-5√a,当a=1.21时,原式=-5√1.21=-5
1、原式=2a/(a+2)(a-2)-1/(a-2)=(2a-a-2)/(a+2)(a-2)=1/(a+2)当a=√3-2时,原式=1/√3=√3/3.2、原式=43-12√35.3、原式=15/2√
a=根号2-1∴a-1
解(a²+2a+1)/(a²-1)-a/(a-1)=(a+1)²/(a-1)(a+1)-a/(a-1)=(a+1)/(a-1)-a/(a-1)=(a+1-a)/(a-1)
(a+2a+1)/(a-1)-a/(a-1)=(a+1)^2/(a+1)(a-1)-a/(a-1)=(a+1)/(a-1)-a/(a-1)=1/(a-1)由a=根号3+1,所以原式=1/(a-1)=1
原式=2√a-(a+√a)/(a-√a)=2√a-√a(√a+1)/[√a(√a-1)]=2√a-(√a+1)/(√a-1)分母有理化=2√a-(√a+1)²/[(√a+1)(√a-1)]=
答:a=1/(2+√3)=(2-√3)/[(2+√3)(2-√3)]=(2-√3)/(4-3)=2-√3所以:0
解原式=[(a+2)/a²]÷[(a²-4)/a]=(a+2)/a²×a/(a-2)(a+2)=1/a(a-2)=1/(√3)(√3-2)=1/(3-2√3)=(3+2√