其中D是有两坐标轴及圆周x2 y2=4所围成

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:26:55
求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.

极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r&#

计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的

极坐标∫∫(D)ln(1+x²+y²)dxdy=∫∫(D)rln(1+r²)drdθ=∫[0→2π]dθ∫[0→1]rln(1+r²)dr=2π∫[0→1]rl

先化简,再求值(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.

(3x2y-2xy2)-(xy2-2x2y)=3x2y-2xy2-xy2+2x2y=5x2y-3xy2当x=-1,y=2时,原式=5×(-1)2×2-3×(-1)×22=10+12=22.

求助二重积分的计算!∫∫(3x+2y)dxdy,其中D是由两坐标轴及直线x+y=2所围成的闭区域. D

思路:分部积分先将(3x+2y)关于y从0到2-x积分,再关于x从0到2积分原积分=6*x*(2-x)+2*(2-x)^2

先化简,后求值.[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2013,y=2012.

[2x(x2y-xy2)+xy(xy-x2)]÷x2y=[2x3y-2x2y2+x2y2-x3y]÷x2y=x-y,把x=2013,y=2012代入上式得:原式=x-y=2013-2012=1.

2(x2y+xy)-3(x2y+xy)-4x2y其中x=-2,y=12

原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.

求一道二重积分:计算∫∫√(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=4及坐标轴所围成的在第一象限内

极坐标系D:0≤θ≤π/2,0≤p≤2∫∫√(1+x²+y²)dxdy=∫[0,π/2]dθ∫[0,2]√(1+p²)pdp=π/2*(1/3)(1+p²)^(

计算二重积分:∫∫(D)1/(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的

再问:最后不应该是ln2*π/4吗?再答:是的再问:非常感谢,我还有一道你能帮我做一下么,我已经提问了,你搜一下吧计算二重积分:∫∫(D)ydxdy,其中D:x^2+y^2≤2x,y≥0再答:解法一样

先化简后求值:4x2y-[6xy-3(4xy-2)-x2y]+1,其中x=2,y=-12

原式=4x2y-6xy+3(4xy-2)+x2y+1=5x2y+6xy-5当x=2,y=-12时,原式=5×4×(-12)+6×2×(-12)-5=-21.

计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

求二次函数y=x²-2x-8d顶点坐标、对称轴及与坐标轴交点的坐标

y=x²-2x-8=(x-1)^2-9顶点坐标(1,9)对称轴x=1当x=0是y=9当y=0是,x=4或x=-2所以坐标轴交点的坐标与x轴的交点为(4,0),(-2,0)与y轴的交点(0,9

如图,已知半径分别为1,2的两个同心圆,有一个正方形ABCD,其中点A,D在半径为2的圆周上,点B,C在半径为1的圆周上

如图,过O作OE⊥AD,交AD于点E,交BC于点F,连接OC,OD,则E、F分别为AD、BC的中点,设正方形边长为2x,故ED=x,又OD=2,∴由勾股定理得OE=4−x2,∴OF=|OE-EF|=|

计算二重积分xy^2dxdy,其中D是由圆周x^2+y^2=4及y轴所围成的右半闭区间.

∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r

化简求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=-1,y=1.

原式=2x2y+2xy-3x2y+3xy-4x2y=-5x2y+5xy,当x=-1,y=1时,原式=-5×(-1)2×1+5×(-1)×1=-5-5=-10.

计算积分:∫∫D(3x-2y)dxdy,其中D由两坐标轴及直线x+y=2所围成的闭区域.要有计算过程哦,

=∫[0,2]dx∫[0,2-x](3x-2y)dy=∫[0,2][3x(2-x)-(2-x)^2]dx=∫[0,2][-x^2+10x-4]dx=32/3