函数f x的定义域为(0,正无穷),f 2=1,当x,y属于(0,正无穷)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:10:29
已知奇函数f(x)的定义域为(负无穷,0)并(0,正无穷),且f(x)在区间(0,正无穷)上是增函数,求证:函数f(x)

嘿我前面不是证过了么?取任意x1-x2属于(0,+无穷)由题意f(-x1)>f(-x2)根据奇函数,-f(x1)>-f(x2)所以f(x1)

已知函数fx是定义域在0到正无穷上为增函数f(3xy)=f(x)+f(y),f(3)=1,

令x=y=1f(3)=2f(1)=1f(1)=1/2令x=1,y=3f(9)=f(1)+f(3)=3/2令x=1,y=9f(27)=f(1)+f(9)=2f(x)+f(x-8)=f(3x(x-8))=

已知函数fx是定义域是R的偶函数,若fx在(0,到正无穷)上是增函数 证明fx在(负无穷,0)上是减函数

取任意x1则-x1>-x2>0因为f(x)在(0,+∞)上是增函数所以f(-x1)>f(-x2)又因为f(x)是定义域是R的偶函数所以f(-x1)=f(x1),f(-x2)=f(x2)所以f(x1)>

已知函数fx 的定义域为(0,正无穷) 且fx 在定义域上为增函数 f(xy)=f(x)+f(y )

f(√2)=1/2利用恒等式f(xy)=f(x)+f(y)f(2)=f(√2)+f(√2)=12f(√2)=1f(√2)=1/2

已知函数fx 的定义域为(0,正无穷) 且fx 在定义域上为增函数 f(xy)=f(x)+f(y ),且f(2)=1,

通过两个已知条件知道,f(6)=2,所以f(a)>f(a-1)+f(6)=f(6a-6),又因为是增函数,所以解一下不等式a>6a-6所以答案是a<6/5

已知函数y=8-x-4\x的定义域为(0,正无穷)那么此函数

函数Y=X+4/X在X=2时取得最小值为4则函数Y=-X-4/X在X=2时取得最大值-4则函数y=8-x-4\x在X=2时取得最大值,答案为4,故选B再问:请问此类题都是这么解决么~还有那个最大值最小

已知函数fx的定义域是(0,正无穷)且满足f(xy)=f(x)+f(y),f(1/2)=1 求f(2)

设x=1/2y=1即f(1/2*1)=f(1/2)=f(1)+f(1/2)=1f(1)=0设x=2y=1/2即f(2*1/2)=f(2)+f(1/2)f(1)=f(2)+f(1/2)f(2)=-1

已知函数fx=1+1/x 【1】用定义证明fx在0正无穷上为减函数【2】判断函数fx的奇偶性

【1】f(x)=1+1/x,令X2>X1>0f(x2)-f(x1)=1/X2-1/X1=(X1-X2)/X1X2<0,∴f(x)在(0,+∞)为减函数.【2】f(-x)=1-1/x既

函数定义域为(0,正无穷),在定义域上位增函数,且对任意实数x,y∈(0,正无穷)满足f(xy)=fx+fy,f2=1,

∵fxy=fx+fy,f2=1所以原不等式可变为f[x(x-2)]<3f(2)=f(8)因为函数在定义域上单调递增所以x²-2x<8且x>0,x-2>0联立求解即可

已知函数fx的定义域是(0,正无穷),当x>1时,fx>0,且f(xy)=fx+fy.

1.令X=Y=1所以f(1)=f(1)+f(1)所以f(1)=02.令xy=X1X=X2所以Y=X1/X2所以f(X1)=f(X2)+f(X1/X2)即f(X1)—f(X2)=f(X1/X2)设X1大

已知函数fx=1/x平方 +1在区间[0,正无穷]上的图像如图所示请据此在该坐标系中不全函数fx在定义域中的图像

这是个偶函数,图像对称于X轴.f(-x)=f(x)将区间[0,正无穷]上的图像对折到[0,-正无穷],就有了全部定义域的图像了.

已知定义域为(0,正无穷)的单调函数fx,若对任意的x属于(0 正无穷)都有f[f(x)+log1/2x]=3,则方程f

乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b||a-b|≤|

已知函数fx的定义域为D:(-无穷,0)∪(0,+无穷),且满足对于任意x,y∈D,有fxy=fx+fy

一.f(1*1)=f(1)+f(1)所以f(1)=0f(1)=f(-1*-1)=f(-1)+f(-1)=0所以f(-1)=0二.f(-x)=f(-1*x)=f(x)+f(-1)=f(x)所以为偶函数三

1.函数f(x)的定义域为[0,正无穷],f(x)在[0,正无穷]上单调递增,且f(2)=0

1.(1)函数f(x)的定义域为[0,正无穷]则,log以2为底x的对数>0,解得x>1即函数f(log以2为底x的对数)的定义域为(1,正无穷)(2)f(x)在[0,正无穷]上单调递增,且f(2)=

已知函数FX的定义域为x不等于0,当x>1时,fx>0,且fxy fx+fy,求证fx在(0,正无穷)上为增函数.

任取x>0,k>1,则[f(kx)-f(x)]/(kx-x)=f(k)/(kx-x)∵k>1∴f(k)>0又kx-x>0∴[f(kx)-f(x)]/(kx-x)>0∴f(x)在(0,+∞)上单调递增