函数f(x)=sin(wx )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:35:54
f(x)=sinwxcosPai/3+coswxsinPai/3-coswxcosPai/6+sinwxsinPai/6+coswx=sinwx+coswx=根号2sin(wx+Pai/4)T=2Pa
&=π/2,w=2.f(x)=sin(2x+π/2)=cos2x,偶函数,关于点M(3π/4,0)对称,且在[0,π/2]上是单调递减函数.
f(x)=sin(wx+φ)-cos(wx+φ)=√2[√2/2sin(wx+φ)-√2/2cos(wx+φ)]=√2sin(wx+φ-π/4)∵函数y=f(x)图像的两相邻对线轴的距离为π/2.∴f
(1)sin(wx+π/6)=sinwxcosπ/6+coswxsinπ/6sin(wx-π/6)=sinwxcosπ/6-coswxsinπ/6f(x)=sin(wx+π/6)+sin(wx-π/6
(1)f(x)=√3sinwxcoswx-cos²wx+1/2=√3/2sin2wx-1/2cos2wx=sin(2wx-π/6)∵图像两相邻对称轴的距离为π/4∴T/2=π/4∴T=π/2
函数f(x)=sin(ωx+φ)(w>0,0≤φ≤π)是R上的偶函数∴f(-x)=f(x)→sin(-wx+φ)=sin(wx+φ)→-sinωxcosφ=sinωxcosφsinωx不恒等于0,∴c
1.f(x)=根号3sin(wx+a)-cos(wx+a)当a+π/3=kπ时f(x)为偶函数,而0<a<π,则a+π/3=πf(x)=2coswx,而函数y=f(x)图象的两相邻对称轴间
(1)f(x)=根号3sin(wx+φ)-cos(wx+φ)=2Sin(wx+φ-π/6)由于是偶函数,即f(x)=f(-x)即2Sin(wx+φ-π/6)=2Sin(-wx+φ-π/6)即Sinwx
f(x)=sin(wx+φ)+cos(wx+φ)=√2sin(wx+φ+π/4)T=2π/w=πw=2f(x)=√2sin(2x+φ+π/4)f(-x)=f(x),所以f(-π/8)=f(π/8)si
(1)f(x)=根号3sin(wx+φ)-cos(wx+φ)=2Sin(wx+φ-π/6)由于是偶函数,即f(x)=f(-x)即2Sin(wx+φ-π/6)=2Sin(-wx+φ-π/6)即Sinwx
已知函数f(X)=sin^2wx+根号3sinwx*sin(wx+π/2)+2cos^2wx,x属于R,在y轴右侧的第一个最高点的横坐标为π/6,求w;若将函数f(x)的图像向右平移π/6个单位后,再
首先f(-x)=f(x),得出是关于Y轴对称,f(0)要不是最大值,要不是最小值,排除B,D因为g的绝对值小于n/2,n就是PAI,所以单从SIN和COS上考虑,SIN移动一个正数(这个正数小于n/2
易得f(x)=sin(wx+q)+cos(wx+q)=√2sin(wx+q+π/4),最小正周期为pai得w=2,f(-x)=f(x)得q=π/4,所以=√2sin(2(x+π/4)),求导后f(x)
已知函数f(x)=(√3)sin(ωx+φ)-cos(wx+φ)(0
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
已知函数f(x)=sin(wx+∮)(w>0.0<∮<派)为偶函数,其图像上相邻的一个最高点和一个最低点之间的距离为√(4+派的平方).求f(x)的解析式解析:∵函数f(x)=sin(wx+∮)(w>
函数f(x)=sin(wx+φ)(w>0,|φ|0,|φ|φ=2π/3f(x)=sin(2x-2π/3+φ)=-sin2x==>φ=-π/3∵|φ|x=kπ+5π/122x-π/3=2kπ-π/2==
f(x)=√2sin(8(x/4+π/2)+φ)因为加了个π/2所以变成了cos所以变成偶函数
原式=sinwxcoswx+cos^2wx=(sin2wx)/2+(cos2wx)/2--二倍角公式=1/2(sin2wx+cos2wx)+1/2--提取1/2=(根号2/2)/sin(2wx+pai
由1,3作为条件,可以得到2,由2,3作为条件,可以得到1,由1,3得到2,证明:由3可知w=2或-2,设定w=2时,由1可以得到2*π/12+t=kπ/2,k为不等于0的整数.得到t=kπ/2-π/