函数f(x)={x^2=1,x>=0}则满足不等式f(1-x^2)>f(2x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:48:13
f(x)=2x+1/x的函数图象

 这样子的,绝对准确~欢迎追问

已知函数f(x)=2x+1,x>=0;f(x)=|x|,x

-3或者1再问:求详解·,谢谢再答:这是分段函数啊。。当X>=0时,FX=2X+1。。然后你把2X0+1=3带入,求出X0=1当X

已知函数F(x)=(1-1/x)^(2x)

这个题目本身是有问题的,用什么方法都不能求F'(1),因为它根本就不存在.或许你条件没给全,如果定义F(1)=lim(1-1/x)^(2x) (x-->1+),则 F

已知函数f(x)=(2x-1)/x 判断函数f(x)的奇偶性

f(-1)=(-2-1)/(-1)=3f(1)=(2-1)/1=1f(-1)=f(1)和f(-1)=-f(1)都不成立所以是非奇非偶函数

已知函数f(2x+1)=(2x+1)/(x+1),求函数f(x)

f(2x+1)=(2x+1)/(x+1)令2x+1=t,x+1≠0,x≠-1x=(t-1)/2∴f(t)=f(2x+1)=(2x+1)/(x+1)=t/[(t-1)/2+1]=2t/(t+1)∴f(x

已知函数f(x)=(2x)/(x^2+1)

f(x)=(2x)/(x^2+1)为减函数设x1>x2>1f(x1)-f(x2)=2x1/(x1^2+1)-2x2/(x2^2+1),=[2x1(x2^2+1)-2x2(x1^2+1)]/(x1^2+

若一次函数f(x) 满足f[f(x)]=1+2x 求f(x)

设一次函数f(x)=kx+b,→f[f(x)]=k(kx+b)+b=k*kx+kb+b=2x+1∴k*k=2,k=±√2kb+b=1,b(k+1)=1,b=1/(k+1)k=√2,时b=√2-1,k=

函数f(x)=2x/(x-1)的值域

f(x)=2x/(x-1)=(2x-2+2)/(x-1)=(2x-2)/(x-1)+2/(x-1)=2+2/(x-1)∵2/(x-1)≠0∴f(x)的值域是(-∞,2)U(2,+∞)

已知函数f(x)的导函数f’(x)是一次函数,且x^2f'(x) - (2x - 1)f(x)=1,求函数f(x)

设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c

已知函数f(x)=x²+x+1,x≥0;2x+1,x

典型的分类讨论.第一种情况m和2-m“都是大于零的情况,此时m在0和根号2之间fx={x+0.5}”+0.75是对称轴x=0.5的函数,分m和2-m“在对称轴左边,或者都在右边或者分别在两边的情况讨论

函数f(x)=x-2 (x

因为f(x)=f(x-1),(x>=2)所以f(2)=f(1)=1-2=-1

函数f(x-1)=2x*x-x,则f(x)的导数

因为f(x-1)=2x²-x=2[(x-1)+1]²-(x-1)-1,所以f(x)=2(x+1)²-x-1=2x²+3x+1f'(x)=4x+3

设函数f(x)满足f(x)+2f(1/x)=x,求f(x)

f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3

已知函数f(x)=2x+1/x+1

(1)f(x)=2-1/x+1设1≤x1<x2≤4f(x1)-f(x2)=2-1/(x1+1)-〔2-1/(x2+1)〕=-1/(x1+1)+1/(x2+1)=(x1-x2)/(x1x2+x1+x2+

一次函数f(x)满足f [f(x)] =1+2x,求f(x)

1.设一次函数f(x)=kx+b,(k≠0),则f(f(x))=k(kx+b)+b=k²x+b(k+1),由题意,k²x+b(k+1)=1+2x,∴k²=2且b(k+1)

设函数f(x)=2x-1 (x

这是一次函数没有最值k>0所以是增函数D对再问:如果是增函数的话,应该选C吧,,想问下,如果是一次函数只要是k大于0,就是增函数吗??再答:是的,k>0是增函数我看错了,就是C

已知函数f(x)=(2-a)x+1,x

这个,是两个函数吧(1)f(x)=(2-a)x+1,x

已知函数f(x)满足2f(x/1)-f(x)=x ,x不等于0,则f(x)等于

2f(1/x)-f(x)=x把1/x换成x,2f(x)-f(1/x)=1/x第二式乘以2,两式相加f(x)=1/3乘以x+2/3乘以1/x

二次函数f(x)满足f(x+1)+f(x-1)=2x^2+4x,求f(x)

f(x)=ax²+bx+cf(x+1)=a(x+1)²+b(x+1)+c=ax²+2ax+a+bx+b+cf(x-1)=a(x-1)²+b(x-1)+c=ax&