函数fx等于sinx 在区间0,π上任取一点,则fx大于等于二分之一的概率
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:22:15
解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2
f(x)=sinx-(1/2)x则f'(x)=cosx-1/2(1)增区间cosx-1/2>0∴cosx>1/2∵0≤x≤π∴0≤x
fx=1/2x+sinx,x∈[0,2π],f'(x)=1/2+cosx由f'(x)>0得cosx>-1/2∵x∈[0,2π]∴0≤x再问:0≤x
求a的取值范围?原式为f(x)=ax+1/(x+2)=[a(x+2)+1-2a]/(x+2)=(1-2a)/(x+2)+a是个比较明显的反函数,x≠-2只有1-2a1/2
(1)f(x)=2cosx(√3sinx+cosx)-1=2√3sinxcosx+2(cosx)^2-1=√3sin2x+cos2x=2sin(2x+π/6),x∈[0,π/2],u=2x+π/6的值
函数fx=sinxωxω>0在区间[0.π/3]单调递增在区间[π/3π/2]上单调递减则函数ω=解析:∵函数fx=sinωx(ω>0)∴f(x)初相为0∵在区间[0.π/3]单调递增在区间[π/3π
设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0
f'(x)=1/2-cosx令f'(x)=0x1=π/3x2=5π/3f''(x)=sinxf''(π/3)=√3/2>0f''(5π/3)=-√3/2
[π/2,3π/2]再问:f(x)=(x^2-3/2x)e^x的单调增区间再答:这得求导了.f'(x)=(x^2-3/2x)e^x+(2x-3/2)e^x=e^x(x^2-3/2x+2x-3/2)=e
因为有单调性所以ax+2的绝对值等于x-4的绝对值要绝对值是因为偶函数.得ax+2=x-4或者ax+2=4-x再因为f(0)只能等于f(0)所以把x=4带入得a*4+2=0得a=-1/2,x=4其实应
f(x)=2(1/2sinx+√3/2cosx)=2sin(x+π/3)∴f(x)最小正周期T=2π由2kπ+π/2≤x+π/3≤2kπ+3π/2得2kπ+π/6≤x≤2kπ+7π/6,k∈Z∴单调递
f'(x)=1/2-cosx令f'(x)=0x1=π/3x2=5π/3f''(x)=sinxf''(π/3)=√3/2>0f''(5π/3)=-√3/2
要分段考虑:(1)(0,Pi/2)时候tanx>sinx,所以y=2sinx(2)(Pi/2,Pi]中sinx>tanx,所以y=2tanx(3)[Pi,3/2Pi)中sinxtanx所以y=2tan
(1)当a=0时,f(x)=|x|x,f(-x)=-|x|x=-f(x),所以f(x)为奇函数;当a≠0时,f(x)=|x|(x-a),f(-x)=-|x|(x+a)≠-f(x),且f(-x)=-|x
奇函数然后取fx2–fx1再答:谢谢。
再问:还有一问在三角形ABC中ABC的对边分别为abc若fA=0A∈(0.π/2)且(1+√3)=2b求角c再答:刚刚不在,现在还需要解答吗再答:角A=45度,好像还缺条件
对函数fx求导,得到:(2ax-x^2)ae^ax+(2a-2x)e^ax=(2a^2×x-ax^2+2a-2x)e^axfx在区间(根号2,2)上单调递减,故(根号2,2)区间上有:(2a^2×x-
函数fx=sinx(cosx-(根号3)sinx)=sinxcosx-√3sin^2x=1/2sin2x-√3(1-cos2x)/2=1/2sin2x+√3/2cos2x-√3/2=sin(2x+π/
1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个
任取X1小于X2属于(0,+无穷大)fx1-fx2=更号下x1的平方+1-aX1-更号下X2+aX2因为X1小于X2,切a大于1所以fx1-fx2大于0即fx1大于fx2所以函数在区间(0,+无穷大)