利用三重积分求由抛物面az=x^2 y^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:52:23
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

利用三重积分计算由抛物面z=4-x^2,坐标面和平面2x+y=4(第一卦限部分)所围图形的体积

这在第一褂限内由z=0得x(max)=2,所以体积=积分号(0,2)dx积分号(0,4-2x)dy积分号(0,4-x^2)dz=积分号(0,2)(16-8x-4x^2加2x^3)dx=32-16-32

算三重积分∫∫∫(x^2+y^2)^(-0.5)dv,其中V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2

应该是柱坐标吧,极坐标是对于二位图形的.V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2)/3所围成的立体,也就是上面是球面,下面是抛物面.故z的范围为(x^2+y^2)/3≤z≤√(4

利用三重积分计算由曲面z= √(x^2+y^2),z=x^2+y^2所围成的立体体积

这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用

利用三重积分计算曲面z=6-x2-y2与z=x

设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2

(急求)一个四面体由平面z=2x+y+2与三个坐标平面围成,利用三重积分计算出它的体积.

图象如上∫(-1->0)∫(-2x-2 ->0)∫(0->2x+y+2)dxdydx=∫(-1->0)dx∫(-2x-2 ->0)dy∫(0->

利用柱面坐标系求三重积分z=x^2+y^2 z=2y.求∫∫∫Zdv

该立体投影到xoy面为x²+y²=2y,即Dxy:x²+(y-1)²=1,其极坐标方程为:r=2sinθ∫∫∫zdv=∫∫(∫[0--->2y]zrdz)drd

设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy

第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2

请教一道高数题:求xy得三重积分,V由z=xy,x+y=1及z=0所围成

积分区域你确定是这样的么?我觉得这样不能围成闭合区域

求由圆柱面x2+y2=2ax,旋转抛物面az=x2+y2及z=0所围成的立体的体积

在电脑上画这种图确很困难,就免了吧!此类二重积分最好用极坐标进行计算.积分域D:由x²+y²=2ax,得(x-a)²+y²=a²,这是一个园心在(a,

三重积分计算 请问图上画红框的部分 面积S(z)=πaz  是怎么求出来的?抛物曲面的面积怎么求? 

D(z)这个区域由X^2+Y^2=aZ可以看出它是一个圆.面积为π*半径的平方.r^2=x^2+y^2=aZ,所以S(z)=πr^2=πaz

计算三重积分fffzdxdydz,区域由旋转抛物面2z=x^2+y^2和平面z=1围成

∫∫∫ΩzdV=∫(0→1)zdz∫∫Dxydxdy=∫(0→1)z•π(2z)dz=2π•(1/3)[z³]|(0→1)=2π/3或∫∫∫ΩzdV=∫∫Dxydxd

有关三重积分的问题由双曲抛物面z=xy及平面z=0,x+y=1所围成的闭区域此题的x,y,z的范围应该怎么样确定 理由是

所围成的闭区域是在第一卦限,在z方向的范围:底面为z=0,即为xoy坐标平面,上面即为马鞍形双曲面z=xy.x和y的范围均为从0到与z轴平行的平面x+y=1.所以,z的积分范围为[0,xy]x的积分范

区域由z=x∧2+y ∧2 和 z=9围成 求三重积分(x+y+z)dv

积分域关于x轴和y轴都对称,所以对x对y的积分都是0

求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分

∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y