利用级数收敛的必要条件求极限需要注意什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:37:48
级数收敛于f(x)什么意思 级数收敛于函数?收敛是不是极限存在的意思?

就是说级数的参数在变,所以级数的和在变,怎么变化呢?按照f(x)方式在变.就说收敛于函数f(x).

利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).

An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n

利用单调有界原理证明数列的收敛 并求极限

数列写成{a[n]}了哈.a[n]∈(0,1),且fn(a[n])=0所以a[n+1]+a[n+1]^2+...+a[n+1]^n=1-a[n+1]^(n+1)再问:幸苦了还是有点不懂为什么an属于0

兄弟,利用级数收敛的必要条件证明:lim n→∞ /n^n=0

an=n!/n^n则lim(n→∞)a(n+1)/an=lim(n→∞){(n+1)!/[(n+1)^(n+1)]}/[n!/(n^n)]=lim(n→∞)(n^n)/[(n+1)^n]=lim(n→

莱布尼茨定理必要条件不成立的证明.我在书上看到这个级数收敛,怎么证明这个级数?

莱布尼茨判别法只是个充分条件原级数再问:不是比较判别法只能是和正向级数吗?再答:额,我错了确实是只能用于正项级数∑(-1)^(n-1)/√n+1

利用级数收敛的必要条件证明 lim n-> 无限 n^n/(n!)^2=0

limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n

求函数项级数的收敛域

首先一般项趋于0这种极限,看最大指数项就行了最大指数项必须是分母(3x)^n|3x|>2,即|x|>2/3lim|[2^(n+1)+x^(n+1)]/[1+(3x)^(n+1)]*[1+(3x)^n]

求下列函数级数的收敛域

因为|coskz/k²|≤1/k²而Σ1/k²收敛所以原级数绝对收敛,即对任何实数都收敛所以收敛域为一切实数.

交错级数只要原级数的极限趋向于0就一定收敛?

不是还有一个要求吗,前一个比后一个大再问:书上是有这个条件,可是(-1)^n/n^0.9为什么是条件收敛?再答:因为它不是绝对收敛,而且这两条都行再问:好吧,我问的是。。原级数为什么收敛绝对值后p-级

利用级数收敛的必要条件证明lim n→∞ n^n/(n!)^2=0

考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0

利用级数收敛的必要条件证明2^n*n!/n^n的在n趋于无穷大时极限为0

再答:如果满意,请点右上角“采纳答案”再问:级数x^n/n+1求和函数,收敛区间要对0另外讨论吗?老师讲没有提过,但答案里面是当x为0时函数为1,有点疑惑再答:幂级数在x=0始终收敛啊再问:嗯,不过这

级数那部分的题,我觉得是必要条件啊?因为部分和数列收敛才是级数收敛的充要条件,但有界不一定收敛啊?

是充要条件.再问:我的想法哪错了?再答:级数收敛是部分和数列收敛来定义的。再问:题干说的是部分和数列有界,不是数列收敛,有界是不一定收敛的啊再答:对于正项级数,它有一个非常好的性质,他的部分和数列是单

高数,级数,正项级数正项级数收敛的充分必要条件是他的部分和有界,这里为什么不说是部分和有极限呢

极限是指趋向无穷的情况,这个概念是无限的.而部分和是指其中一部分的和,这个概念是有限的.有界,是一个有限的表达方式有限的概念要用有限的表达方式去表达

级数收敛的必要条件怎么理解?

△正确如p级数Un收敛,那么qlimUn=0qlimUn=0就是p级数Un收敛的必要条件p级数Un收敛的必要条件就是qlimUn=0一点都不错再问:谢谢你

利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,

这是刚学级数吗?首先通项1/2^n-1/3^n>0,是正项级数.由1/2^n-1/3^n可知∑{1≤n}(1/2^n-1/3^n)如果学了比较判别法,可以直接由∑{1≤n}1/2^n收敛证明原级数收敛

若极限=0 那么级数是收敛的吗?

如果你的意思是级数的项的极限是0,那么级数不一定收敛,比如∑1/n不收敛,∑0收敛.如果你的意思是和的极限是0,那么级数就等于0啊,就收敛.

大学高数,无穷级数,收敛的必要条件

思路:只要证明了级数∑un收敛,就有limun=0.第一个,对∑n!/n^n,用比值法,u(n+1)/un=1/(1+1/n)^n→1/e(n→∞),所以级数∑n!/n^n收敛,所以limn!/n^n

证明级数收敛的一个必要条件是,n趋于无穷时,其通项趋于0.

把调和级数看成一个数列,数列通项是调和级数前n项和数列收敛的充要条件是:柯西判别法(什么名字记不清楚了)对于调和级数的这个数列,满足∀ε>0,存在n>0,∀m>n,有1/n+1