化简 f(x)=-2-x 4-x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:02:24
a=[1,1,1,1;2,3,-1,-1;3,2,1,1;3,6,-1,-1];>>b=[0;2;5;4];>>x=inv(a)*bx=0.61.3-2.2518e+162.2518e+16再问:我怎
执行结果x= Columns1through2 0.499999998377261 &
证明:令x2=0,则原等式化为:f(x1+0)+f(x1-0)=2f(x1)*f(0)f(x1)+f(x1)=2f(x1)*f(0)2f(x1)=2f(x1)*f(0)可得f(0)=1.令x1=0,则
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
2X1+X2+X3+X4+X5=6①X1+2X2+X3+X4+X5=12②X1+X2+2X3+X4+X5=24③X1+X2+X3+2X4+X5=48④X1+X2+X3+X4+2X5=96⑤①+②+③+
因为|(|a|-|b|)|=(|x|-|x1|+|x2|+...+|xn|).
第二个方程减去第四个方程得x2+3x3-4x4=2然后再加上第一个方程得2x3-3x4=2(1)(消去了x1)第三个方程减去2倍第四个方程得2x2+4x3-4x4=1然后加上2倍第一个方程得2x3-2
才零分,我打的累啊,给点分吧.增广矩阵12-11|12-312|2A=3-103|31-521|1然后第二行减去第一行2倍第三行减去第一行3倍第四行减去第一行1倍再第四行减去第二行,第三行减去第二行得
f(x)=f(x-1)(x>4),是这个吗?(这个就说明此函数有周期性,且周期为1)f(5)=f(4)=f(3)=6.
增广矩阵=21-1113-21-3414-35-2r2-r1-r3,r1-2r30-75-950-75-9514-35-2r2-r1,r1*(-1/7),r3-4r101-5/79/7-5/70000
由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧
x1-x2+x4=2x1-2x2+x3+4x4=3两式相加得2x1-3x2+x3+5x4=5因为同时2x1-3x2+x3+5x4=λ+2两个方程的左边相等,要使方程有解,则方程的右边也相等5=λ+2,
系数矩阵A=[1103-1][1-12-10][4-263-4][24-24-7]行初等变换为[1103-1][0-22-41][0-66-90][02-2-2-5]行初等变换为[1103-1][02
取-X和X作x1,x2得f(X-X)+F(X+X)=2F(X).F(-X)-->F(0)+F(2X)=2F(X).F(-X)(1)再把x1,x2调换一下得F(-2X)+F(-X+X)=2F(X).F(
设y=x+2则f(-x)=f(2-x-2)=f(2-(x+2))=f(2-y)f(x+4)=f(2+2+x)=f(2+y)因为f(x+4)=f(-x),所以f(2+y)=f(2-y)即对称轴为y=2方
二次型的矩阵A=200002023|A-λE|=2-λ000-λ2023-λ=-(λ-2)(λ-4)(λ+1)特征值为λ1=2,λ1=4,λ1=-1A-2E=0000-22021-->00000101
x1+x4=2x1+3dx2+x3=2x1+3dx2+x3=x1+x4x1,x4是方程2x²+3x-1=0的两根,由韦达定理得x1+x4=-3/2x2+x3=-3/2
因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3