2cos(x a) 2*sin(x-a) 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:55:20
sin^2x+cos^2x)(sin^4x-sin^2xcos^2x+cos^4x) =sin^4x-sin^2xcos

那个前半括号里面相加等于一

证明COS(X+Y)COS(X-Y)=COS^2X-SIN^2Y

COS(X+Y)COS(X-Y)=(COSX*COSY-SINX*SINY)(COSX*COSY+SINX*SINY)=(COSX*COSY)^2-(SINX*SINY)^2=COS^2X(1-SIN

化简2sin^2(x)sin^2(φ)+2cos^2(x)cos^2(φ)-cos2(x)cos^2(φ)

据:cos2(x)=cosx^2-sinx^2=2cosx^2-1得:2sin^2(x)sin^2(φ)+2cos^2(x)cos^2(φ)-cos2(x)cos^2(φ)=2sin^2(x)sin^

∫sin(x) cos^2(x)dx

原式=-∫cos²xdcosx=-cos³x/3+C再问:第一步能讲一下为什么吗?再答:dcosx=-sinxdx采纳吧

求导f(x) = cos(3x) * cos(2x) + sin(3x) * sin(2x).

f(x)=cos(3x)*cos(2x)+sin(3x)*sin(2x)=cos(3x-2x)=cosxf'(x)=-sinx

化简 cos^2(x)*sin^2(x)-sin^2(x)

=sin^2(x)*[cos^2(x)-1]=-sin^4(x)再答:别忘了负号再问:嗯谢谢

sin(x+y)sin(x-y)=k,求cos^2x-cos^2y

-2k=cos2x-cos2y=[2(cosx)^2-1]-[2(cosy)^2-1]=2[(cosx)^2-(cosy)^2]cos^2x-cos^2y=-k

化简[1-(sin^4x-sin^2cos^2x+cos^4x)/(sin^2)]+3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x

cos 2x /sin^2 x*cos^2 x不定积分

∫cos2xdx/(sin^2xcos^2x)=4∫cos2xdx/(2sinxcosx)^2=4∫cos2xdx/(sin2x)^2=2∫cos2xd(2x)/(sin2x)^2=2∫d(sin2x

2cos x (sin x -cos x)+1

2cosx(sinx-cosx)+1=2sinxcosx-2cosx^2+1=sin2x+1-2cosx^2=sin2x-cos2x=√2sin(2x-π/4)

求证(cos^2 x-sin^2 x)(cos^4 x+sin^4 x)+1/4 sin 2x sin 4x=cos 2

证明:∵cos²x-sin²x=cos2xcos⁴x+sin⁴x=1-2cos²xsin²x=1-(1-cos4x)/4=3/4+(co

证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4

sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=sin^2(x)+cos(x+30)[cos(x+30)+sinx]=sin^2(x)+cos(x+30)(cosxcos30

化简y=sin^2(x)+2sin(x)cos(x)+3cos^2(x)

y=sin²x+2sinxcosx+3cos²xy=(sin²x+cos²x)+2sinxcosx+(2cos²x-1)+1=1+sin2x+cos2

已知tan=2,求(cos x+sin x)/(cos x-sin x)+sin^2x

sinx=2cosx,sin^2x=4cos^2xsin^2x=4-4sin^2x,sin^2x=4/5(cosx+sinx)/(cosx-sinx)+sin^2x=(1+tanx)/(1-tanx)

已知 sin a,sin 2x ,cos a 成等差数列,sin a ,sin x ,cos a 成等比数列,求cos

依题有2sin2x=sinθ+cosθsinx的平方=sinθ*cosθ又2sin2x=4sinx*cosxsinθ*cosθ=[(sinθ+cosθ)的平方-1]/2所以有sinx的平方=[(4si

用cos x表示sin^4 x -sin^2 x +cos^2 x

sin^4x-sin^2x+cos^2x=sin^2x*(sin^2x-1)+cos^2x=-sin^2x*cos^2x+cos^2x=cos^2x*(1-sin^2x)=cos^2x*cos^2x=

(1-(sin^4x-sin^2xcos^2x+cos^4x)/sin^2x +3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x