2lim(x-sinx) x^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:50:30
求极限lim.tanx-sinx / x^3

tanx-sinx/x^3=[sinx(1-cosx)]/(x^3*cosx)=(sinx/x)*(1-cosx)/x^2(当x趋于0时,cosx的极限是1)=1*1/2(1-cosx与1/2*x^2

求极限 lim/x-0 (e^x+sinx+x^2)

有没有写错?x趋于0三项的极限都存在所以原式=e^0+sin0+0^2=1

lim(x+e^2x)^(1/sinx)

是x→0吗?属于1^(∞)型,取自然对数,用罗彼塔法则,分子、分母同时求导,原式=lim[x→0]ln(x+e^2x)/sinx=lim[x→0][(1+2e^2x)/(x+e^2x)]/cosx=[

1.lim x→0 3x/(sinx-x)

limx→03x/(sinx-x)洛必达=lim3/cosx-1->∞2.limx→0(1-cosmx)/x^2=lim2sin^2(mx/2)/x^2=lim2(mx/2)^2/x^2=m^2/23

求极限:lim{(2x+sinx)/x}(x->无穷大)

不能用罗比达法则,当x->无穷大,sinx当然不会趋向无穷大啊,其值域为[-1,1]啊,也就不会是无穷大/无穷大了.当x->无穷大时,1/x->0,也就是说1/x是一个无穷小量,而sinx是有界的(值

lim x趋向0 x^2-sinx/x+sinx

你好!limx趋向0时x^2-sinx/x+sinx=-1因为:limx趋向0时x^2=0,sinx/x+sinx=1,sinx=0.x^2-sinx/x+sinx=0-1+0=-1正解!希望你能满意

求极限lim(x→0)x-sinx/x^3

罗比达法则答案:1/6

lim(x-0)sinx-x/x^3的极限

可以用洛必达法则.原式=lim(x→0)(cosx-1)/(3x^2)=lim(x→0)-2sin^2(x/2)/(3x^2)=lim(x→0)-2(x/2)^2/(3x^2)=-1/6也可以把sin

求极限 lim (x->0) 3x/(sinx-x)

x趋于0sinx/(3x)极限=1/3x/3x极限=1/3所以(sinx-x)/3x极限=0所以3x/(sinx-x)趋于无穷所以极限不存在或者用洛必达法则分子求导=3分母求导=cosx-1分母趋于0

lim(x趋向0)(x^3)/(x-sinx)

lim(x->0))x^3/(x-sinx)=lim(x->0)3x^2/(1-cosx)//:用一次洛必达法则=lim(x->0)6x/(sinx)//:再用一次=lim(x->0)6/cosx=6

lim(e^tanx-e^3x)/sinx

-2再问:我需要过程。。再答:lim(e^tanx-e^3x)/sinx为0/0型,用洛必达法则。分子分母分别求导=lim(csc^2*e^tanx-3e^3x)/cosx=(1-3)/1=-2

lim (e^sinx-e^x)/(sinx-x)

有两种方法,都稍微麻烦一些:1、利用罗比达法则,分子分母求导lim(e^sinx-e^x)/(sinx-x)=lim(cosxe^sinx-e^x)/(cox-1)第二次分子分母求导:=lim[(e^

lim (e^x-sinx-1)/(arcsinx^2)

lim(x→0)(e^x-sinx-1)/(arcsinx^2)=lim(x→0)(e^x-sinx-1)/x^2(0/0)=lim(x→0)(e^x-cosx)/(2x)(0/0)=lim(x→0)

lim(x趋于无穷)[(x+3)/(x^2-x)]*(sinx+2),求函数极限

lim(x趋于无穷)[(x+3)/(x^2-x)]=lim(x趋于无穷)[(1+(3/x))/(x-1)]=0所以,lim(x趋于无穷)[(x+3)/(x^2-x)]*(sinx+2)=0

lim(x->0)x/(sinx)^2=?

lim(x->0)x/(sinx)^2=lim(x->0){[x/(sinx)]^2}/x=∞这是因为lim(x->0)x/sinx=1

lim x-sinx/x+sinx

(x→0)lim(x-sinx)/(x+sinx).罗比达法则=(x→0)lim(1-cosx)/(1+cosx)=0/2=0

求极限lim{x-0}(sinx)/X^3+3x

lim{x-0}(sinx)/X^3+3x=lim{x-0}x/3x=1/3

求下列极限,lim(x+2sinx)/(x+3sinx),x→0

上下除以x=(1+2sinx/x)/(1+3sinx/x)sinx/x极限是1所以原来极限=(1+2)/(1+3)=3/4