2x 1的定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:43:44
两曲线的交点是(-1,1)、(1,1),则S=∫[(2-x²)-x²]dx【积分区间是[-1,1]】=[2x-(1/3)x³]【积分区间是[-1,1]】=8/3求体积:因
解题思路:利用微积分基本定理解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
首先将[1,4]切开为n个区间每个区间的底长Δx=(4-1)/n=3/n第k个区间是[(k-1)/n,k/n]选取一点ξ_k=1+3k/n,k∈Z+所以∫(1→4)f(x)dx=lim(n→+∞)Σ(
画出2x+1的图像,也就是求横坐标在0到2时,坐标轴被这条直线包围的面积,面积梯形得6
∫(sinx-sin2x)dx=∫sinxdx-∫sin2xdx=-cosx|-1/2∫sin2xd2x=(-cosx+1/2cos2x)|=1/2cos4-cos2-1/2cos2+cos1=1/2
楼上正解,但可以不用设t为了方便,上下限不写,最后带原式=1/2∫1/√(1+x^2)d(1+x^2)=1/2*{2√(1+x^2)}=√(1+x^2)|代入上下限0,2得:=√5-1应该知道√是根号
F(x)=S1/(x^2)dx=Sx^(-2)dx=1/(1-2)*x^(1-2)+c=-x^(-1)+c=-1/x+c在(a,b)上的定积分=F(b)-F(a)=1/a-1/
∫(-2,2)√(4-x^2)(1+x(cosx)^3)dx=∫(-2,2)√(4-x^2)dx+∫(-2,2)√(4-x^2)x(cosx)^3dx因为积分区间关于原点对称,且√(4-x^2)是偶函
解题思路:利用定积分求面积.解题过程:求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积。【注】:如果你没抄错题的话(直线y=0?曲线?):【解】:如图,直线x=0、x=2、y=0与曲线
对的,极限存在即为收敛本题积分得到的结果为ln(x+1)趋向于无穷极限不存在,所以不收敛
(sinx+1/2)的定积分,将该函数分为两部分:sinx以及0.5,前者关于原点对称,而积分区域为-3到3,因此积分结果=0后者关于y轴对称,积分结果为0到3的两倍,=1.5所以,结果为0+1.5=
∫x/(1+x²)dx=1/2*/d(1+x²)x/(1+x²)=1/2*ln(1+x²)+C
换√x=t.应该就可以了
分部积分法∫(0~1)xe^x/(1+x)^2dx=-∫(0~1)xe^xd[1/(1+x)]=-e/2+∫(0~1)[1/(1+x)×(x+1)e^x]dx=-e/2+∫(0~1)e^xdx=-e/
sysxabf1=x+1;f2=0.5*x^2;int(f1,0,1)+int(f2,1,2)f=exp(ax)*sin(bx)inf(f)
上图.
解题思路:根据二次函数的性质来确定(对称轴、顶点坐标、开口方向以及二次项系数)解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://da
第一题无法用分部积分法