可逆矩阵可唯一分解为一个正线上三角矩阵和一个酉矩阵之积

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/05 16:07:33
证明矩阵总是为可逆矩阵

考虑线性方程组[(A^T)A+λI]x=0,故有(A^T)Ax=-λx,即x为(A^T)A的对应于负特征值-λ的特征向量.又因为(A^T)A为半正定矩阵,其特征值均非负,所以x=0,所以矩阵(A^T)

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵

|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.

怎样证明一个N阶可逆实矩阵A可由两个可逆的对称矩阵的乘积表示

利用实Jordan标准型可以证明任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分再问:能具体说下证明步骤吗?再答:先把A化到实Jordan标准型A=PJP^{-1},然后把J的

如果一个矩阵可逆,它的逆矩阵唯一吗

如果一个矩阵可逆,它的逆矩阵必然唯一,事实上.设A可逆,B,C都是A的逆,由矩阵可逆的定义知道AB=BA=E,AC=CA=E所以B=BE=B(AC)=(BA)C=EC=C故A若有逆,必然唯一.

已知矩阵A,求可逆矩阵P,使PA为行最简形,P是唯一的吗

行最简形是唯一的当A可逆时,P唯一当A不可逆时,P不唯一

证明可逆矩阵可以分解成分解成一个酉矩阵和一个实上三角矩阵

对于一般的可逆复矩阵来讲这个要求是做不到的,在QR分解当中只能要求上三角矩阵的对角元是实的(可以是正的),但不能要求整个上三角阵都是实的,因为QR分解本质上是唯一的.比如说1i2i3可逆,但不可能有满

怎样判断一个矩阵能否直接进行LU分解以及分解是否唯一?

充要条件:A的所有顺序主子阵都是非奇异的这样才能保证每一步Gauss消去主元非零,否则就要使用选主元的Gauss消去法:PAQ=LU因为你所给的矩阵是奇异矩阵你可以自己分分看你给的那个矩阵,不经过选主

任意一个实对称矩阵A,若存在一个可逆矩阵P,有P'AP成对角型,且对角线上元素均为特征值,那么P是否一定是正交矩阵?

显然不一定,比如A=0,P不是正交阵照样满足你的要求.再问:也就是说,如果是满秩矩阵一定成立,如果不是满秩矩阵就应该不一定成立再问:好像你每次回答问题都是半夜,呵呵,注意身体呀再答:我可没说过满秩矩阵

如何证可逆实矩阵可分解为一个正交矩阵与一个正定矩阵的乘积

这东西叫极分解.需要先证一个引理:任何一个实方阵A,都存在正交方阵P,Q使得PAQ=diag(a1,a2,...,ar,0,0...,0),其中ai都是正实数有这个引理.题中所给的是可逆矩阵,设这个可

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.

|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A

怎么证明复矩阵UR分解的唯一性.(R主对元为正实数)

前提是矩阵得是可逆方阵,或者在列满秩的前提下精简的分解形式证明是利用A^HA=R1^HR1=R2^HR2,然后根据Cholesky分解的唯一性得到R1=R2,然后U=AR^{-1}自然也唯一

平面向量基本定理1.为什么一个向量可被分解?2.若分解为两不共线向量e1,e2,为什么存在k1,k2且唯一?

向量的分解是由向量的加法的定义用纯几何的方法推出的.至于k1,k2的存在唯一性也是用几何的方法得到的.

可对角化矩阵一定可逆吗?

不一定,因为如果A的特征值中有一个或有几个为0时,很显然只要A的特征值的几何重数与代数重数一样的话,那么一定可相似对角化,而对角元素即为对应的特征值,此时A的行列式为0(A的行列式为其所有特征值的乘积

矩阵Cholesky分解唯一性问题

Hermite正定阵有Cholesky分解A=LL^H,其中L是对角元为正数的下三角阵,这个分解是唯一的再问:假如这个矩阵是实矩阵,有对称正定性,那么一定能进行Cholesky分解吗?分解的三角阵是实

将可逆矩阵分解成初等矩阵乘积的形式

和矩阵求逆一样,初等行变换,每做一个初等变换就相当于乘以一个初等矩阵.当已知矩阵化成单位矩阵时,所有的初等矩阵都出来了,分别求出它们的逆,即得.

矩阵特征分解唯一性问题

线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectraldecomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法.需要注意只有对可对角化矩阵

可逆矩阵行列式不为零,可逆矩阵一定可化为单位矩阵,进行初等变换矩阵是等价的啊!

A与B等价则存在可逆矩阵P,Q满足PAQ=B所以|P||A||Q|=|B|所以|A|与|B|差一个非零的倍数!

设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.

考虑到R^n的任何一组基可以标准正交化即可得到存在性(考虑两组基的过渡阵).唯一性是显然的,证明如下:设T_1B_1=T_2B_2,则{T_2}^{-1}T_1=B_2{B_1}^{-1}.注意到1.

一个复矩阵A可逆,证其可分解为一个酋矩阵与上三角矩阵的乘积,并且该分解唯一

分解的存在性直接用Gram-Schmidt正交化过程证明即可但不可能保证分解唯一,如果A=QR,那么A=(-Q)(-R)一般来讲要一个额外的条件来保证唯一性,常用的条件是R的对角元为正实数,这样就和G