向量叉乘证明题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:50:58
用向量方法证明一个平面几何题

设向量AB=c,向量BC=a则向量AC=c+a则向量AD=c+a/3向量AE=2(c+a)/3设向量GD=k向量AD=k(c+a/3)则向量BG=向量BD-向量GD=a/3-k(c+a/3)=(1-k

a向量乘b向量等于b向量乘a向量证明用中间量投影

向量a•向量b=bacosα(a向量在b上的投影,α是向量ab间的夹角)向量b•向量a=abcosα(b向量在a上的投影,α是向量ab间的夹角)可见,两者相等.

空间向量证明题 a向量为单位向量

一开始作的点O,是P在平面的投影的点.所以必定有PO垂直平面,也就有PO垂直向量a.a向量×PO向量=0那么,a向量×OA向量=0,逆定理得证

向量叉积的反对称性证明

先是长度aXb的模等于a的模乘b的模bXa的模也等于a的模乘b的模所以模长相等再是方向显然根据右手螺旋定则aXb方向与bXa方向相反所以aXb=-bXa

一道向量证明题证明:对任意四边形ABCD中,有AB乘CD+BC乘AC+CA乘BD=0是BC乘AD,写错了

AC=AB+BCBD=BC+CD原式=AB乘CD+BC乘(AB+BC)-(AB+BC)乘(BC+CD)打开化简消去相同项就可以了,基本思路这样,你题目少写了一项

急!!!!!!向量证明题

解题思路:可根据平面向量的知识求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include

两道高一数学必修4向量数乘运算证明题

F为BC中点吧1.(1)EF=EA+AB+BF(2)EF=ED+DC+CF(1)+(2)2EF=(EA+ED)+AB+DC+(BF+CF)=AB+DCEF=(1/2)(AB+DC)两个字母均表示向量2

点乘和叉乘的区别,不是向量中的

点乘和叉乘(即·和×)在一般实数和字母的乘法运算中本质上是一样的,都表示数与数的乘积关系不过有些写法是有规定的如:数与数之间只能用叉乘(2×3),不能用点乘(避免看成小数点)字母与字母之间一般用点乘(

高数 大一 a向量 叉乘 b向量 = a向量 叉乘 c 向量 能得出什么结论?

怎么能这样说呢?对于非零平面向量,a×b=a×c,则:a×(b-c)=0,只能说明a与b-c是同向向量,如果没有类似|b|=|c|的条件,绝对不能得出:b=c比如:a=(1,1),c=(0,1),b=

向量叉乘求导公式(向量a)×(向量b)

矢量-点积-叉积-三维运动这本来是MIT的物理课.从第20分钟开始是向量叉乘的方法.

向量叉乘如何求得两向量的夹角

先用a-b求得第三边,然后用余弦定理可得夹角.

两向量叉乘的意义是什么

说到二个向量的叉乘,向量必须是空间向量\x0d设向量AB=向量a-向量b,向量CD=向量a+向量b\x0d向量AB=(x1,y1,z1),向量CD=(x2,y2,z2)\x0d向量AB×向量CD=(y

为什么空间向量叉乘可以写成三阶行列式,平面向量不用乘单位向量

是这样的,严格意义上来讲,向量的叉乘都是三阶行列式.平面向量因为缺少z方向的分量(实际上应该写成(x,y,0)的形式),计算的时候为了方便就写成了二阶行列式.正规来讲,平面向量(x1,y1,0)*(x

请用向量叉乘,计算法向量

法向量垂直于平面上的所有向量,所以设法向量为n=(a,b,c),n⊥D1B,n⊥CC1则n·D1B=a+b+c=0n·CC1=c=0所以a=-b,c=0,设a=1(一般都设为1),则b=-1,所以n=

焦点:F1F2.椭圆上任意一点M..向量MF1乘向量MF2最大时.M是不是在长轴上?,咋证明?

如图,设椭圆方程为:x^2/a^2+y^2/b^2=1;F1(-c,0),F2(c,0),M(x,y);则”向量MF1乘向量MF2”=(x+c)*(x-c)+y^2=x^2+y^2-c^2 

已知|向量a|=3,|向量b|=4,向量a点乘向量b等于3,求向量a叉乘向量b

首先,我必须指出“(2向量a-3向量b)*(2向量a+向量b)=61“的写法是不对的,应该是",(2向量a-3向量b)·(2向量a+向量b)=61”,点乘(结果是标量)和叉乘(结果是矢量)是两个概念,

向量叉乘的求导(向量a)×(向量b)的如何求导,帮证明一下.注意:我要的是证明.对两个向量的叉乘求导,两个向量都包含变量

用外积的分步积分法,假设a,b都是自变量为x的向量∫(a叉b撇)dx=∫a叉db=a叉b-∫(da叉b)=a叉b-∫(a叉b)dx移项,两边微分,完毕唉,这么难打的证明才这么点分额.也就我这么好心,:

非零向量乘零等于零向量怎么证明啊?线性空间.线性代数的作业啊...

因为0α=(0+0)α=0α+0α(分配律)所以0α=0(零向量)

关于向量“叉乘”的问题 A向量叉乘A向量结果是“0”还是“0向量”?

向量叉乘向量的结果,还是1个向量.【是和这2个参与叉乘运算的向量都垂直的向量】当叉乘的结果=0时,这个0是0向量【各个分量都是0】所以A向量叉乘A向量结果是“0向量"

N维向量空间向量的秩,证明题

充分:可证(1)A可以由a1,a2.ar表示(2)a1,a2.ar是线性无关的,则可知a1,a2.ar是最大线性无关组.(1)A与a1,a2.ar等价说明A中任何向量可由a1,a2.ar表示.(2)反