向量组A:a1,a2,a3与向量组B:b1,b2等价,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:39:06
应该选C的因为向量组a1,a2,a3,a4,a5线性相关又因为向量组a2,a3,a4,a5线性无关所以向量a1可由向量组a2,a3,a4,a5线性表示因为向量组a2,a3,a4,a5线性无关所以向量组
证明:(a1+a2+2a3,a1+2a2+a3,2a1+a2+a3)=(a1,a2,a3)K其中K=112121211所以B组可由A组线性表示.又因为|K|=-4≠0,所以K可逆.所以(a1,a2,a
假设a1+a2+a3,a2+a3,a3线性相关,则k1(a1+a2+a3)+k2(a2+a3)+k3a3=0其中k1、k2、k3不全为0.化简成k1a1+(k1+k2)a2+(k1+k2+k3)a3=
证明:设k1(a1+a3)+k2(a2+a3)+k3a3=0得:k1a1+k2a2+(k1+k2+k3)a3=0由a1,a2,a3线性无关得k1=0,k2=0,k1+k2+k3=0所以有k1=k2=k
证明:因为(a1+a2,a2+a3,a3+a1)=(a1,a2,a3)KK=101110011而|K|=2≠0,即K可逆.所以r(a1+a2,a2+a3,a3+a1)=r[(a1,a2,a3)K]=r
k1(a1+a3)+k2(a1-2a3)+k3(a2+a3)=0=>(k1+k2)a1+k3a2+(k1-2k2+k3)a3=0=>k1+k2=0(1)andk3=0(2)andk1-2k2+k3=0
设k1b1+k2b2+k3b3=0,然后把b1=a1+a2+a3等都代进去,整理一下,证出k1,k2,k3都是0就可以了.
令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a
假设:a1+a2、a2+a3、a3+a1是线性相关的,则:a3+a1=m(a1+a2)+n(a2+a3)(m-1)a1+(m+n)a2+(n-1)a3=0因a1、a2、a3线性无关,则:m-1=0且m
(1)向量组a1、a2、a3、kb1+b2线性无关假如向量组a1、a2、a3、kb1+b2线性相关,则kb1+b2可由a1,a2,a3线性表示因为b1可由a1,a2,a3线性表示所以b2可由a1,a2
考虑M=121111134是个可逆矩阵A=(a1,a2,a3)B=(b1,b2,b3)MA=B既然A,M满秩,B一定满秩,因此所述三个向量线性无关或者从定义,如果存在c1,c2,c3使得c1b1+c2
(B)=3,则a2,a3,a4线性无关则a2,a3无关r(A)=2则a1,a2,a3线性相关所以a1可以有a2,a3线性表示或者根据a1,a2,a3线性相关则存在不全为0的常数k1,k2,k3使得k1
A假设a1+a2,a2+a3,a3+a4,a4+a1线性相关,则存在不全为零的k1、k2、k3、k4,使得k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k
因为RA=RB=3所以得到a1,a2,a3线性无关a1.a2.a3.a4线性相关所以a4可以由a1.a2.a3线性表出则有a4=k1a1+k2a2+k3a3假设X1a1+X2a2+X3a3+X4(a5
若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2(线性相关,)
|B|=|2a1+a3,a3,a2|第1列减第2列=|2a1,a3,a2|第1列提出2,第2,3列交换=-2|a1,a2,a3|=-2|A|=-6
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B