向量组线性无关,可由向量组表示,等价
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:30:13
说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数
证明:由向量组[a+c,b+c]线性相关,得线性关系b+c=k(a+c)+m化解得(1-k)c=k*a+m-b假设k=1,得0=a+m-b,即b=a+m线性关系这与已知向量组[a,b]线性无关相矛盾,
因为b可由向量a1,a2,...,as线性表示,且表示法唯一.所以方程组(a1,a2,...,as)x=b有唯一解所以r(a1,a2,...,as)=r(a1,a2,...,as,b)=s所以a1,a
证明:设k1a1+k2a2+k3a3=b若b=0由0向量的唯一表示,证明a1,a2,a3线性无关若b不等于0向量,则k1,k2,k3至少一个不为0向量,不妨设为k3,若a1,a2,a3线性相关,设存在
证明:∵a1,a2,a3线性相关∴存在不全为0的数b1,b2,b3使b1a1+b2a2+b3a3=0又a2,a3,a4线性无关∴a2,a3线性无关∴若b1=0,则b2a2+b3a3=0∴b2=b3=0
(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?
(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a
(1)因为a2,a3,a4线性无关所以a2,a3线性无关又因为a1,a2,a3线性相关所以a1可由a2,a3线性表示(2)假如a4可由a1,a2,a3线性表示.由(1)知a4可由a2,a3线性表示这与
k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a
可参考:http://zhidao.baidu.com/question/280278707.html
知识点:若A组可由B组线性表示,则R(A)
几个线性无关的向量就构成决定了一个几维的坐标系.所以如果向量组B的向量个数小于向量组A的向量个数.那么就无法判断B是否线性相关.所以如果向量组B的向量个数大于等于向量组A的向量个数.那么就B一定是线性
(1)向量组a1、a2、a3、kb1+b2线性无关假如向量组a1、a2、a3、kb1+b2线性相关,则kb1+b2可由a1,a2,a3线性表示因为b1可由a1,a2,a3线性表示所以b2可由a1,a2
如果猜得不错,ni是第i个分量为1,其他分量都是0的向量.把A,N都看成矩阵,ai,nj是列向量.N可由A线性表示,意思就是有矩阵C=c11c21…………cn1c12c22…………cn2…………………
向量组A可由向量组B线性表示不可以推出A与B等价向量组A可由向量组B线性表示,向量组B可由向量组A线性表示,则向量组A与向量组B等价是要同时满足才可以
必要性因为任意n+1个n维向量一定线性相关,设a是任意一个n维向量,则向量组a,a1.a2…an必线性相关,又n维向量组a1.a2…an线性无关,a都可由他们线性表示.充分性若任一n维向量a都可由a1
线性代数一些最重要的概念可以整理如下所示:(1)行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如∣A∣≠0〈===〉A是可逆阵〈===〉r(A)=n(
假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a
是错的结论应该是d可由其余线性表示再问:能说为什么吗?a不可以用b,d表示吗?再答:a.b.c无关则a.b无关由a.b.d相关知d可由a.b表示再问:a不可以用b,d表示吗?那a不是可以由b,d,c表
设x·α1+y·α2+z·α3+w(kβ1+β2)=0.由β1可由α1,α2,α3线性表示,可设β1=a·α1+b·α2+c·α3,代入得(x+awk)α1+(y+bwk)α2+(z+cwk)α3+w