34.设随机变量在(0,1)上服从均匀分布, 求Y=2X 8的概率密度.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:01:47
设随机变量X在区间[-1,2]上服从均匀分布;随机变量(如图),求Y与Y^2的期望、方差.

首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X在(0,1)上服从均匀分布,(1)求Y等于绝对值X的概率密度.

Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0

1、设随机变量X服从区间(0,2)上的均匀分布,试求随机变量Y=X2的概率密度.(X2为X的平方,百度上打不出在上方的小

1、方法一:求Y的累积分布函数Fy(y),对Fy(y)求导可得概率密度函数fy(y)已知X的累积分布函数Fx(x)=P(X

设随机变量(x,y)在以点(0,1),(1,0)(1,1)为顶点的三角形区域D上服从均匀分布,求D(x)

D(x)=Ex²-(Ex)²均匀分布,概率密度是面积的倒数:f(x,y)=1/s=2f(x)=∫(1-x,1)f(x,y)dy=∫(1-x,1)2dy=2xEx=∫(0,1)xf(

设随机变量x在区间[-1,2]上服从均匀分布,随机变量Y=1.x>0;Y=0,x=0;Y=-1,x0)=2/3,

U(-1,2)概率密度f(x)=1/3,2>x>-10,其他P(Y=1)=P(X>0)=∫(下限0到上限正无穷大)f(x)dx=∫(下限0到上限2)1/3dx=2/3

设随机变量x在区间[0,4]上服从均匀分布,则p{1<X<3}=?

若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

设随机变量X在(0 1)上服从均匀分布 随机变量Y在(0 2)上俯冲均匀分布 且X与Y相互独立 求Z=Y-2X的分布函数

先求fx=1fy=1/2然后根据z<-2-2≤z<00≤z<2z≥2分别进行进行积分求F(z)再根据F(z)求密度函数fz.