3X3矩阵的逆矩阵是不是subspace
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:56:41
1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi,Xj的协方差.2、协方差是反映的变量之间的二阶统计特性,如果随机向
把最左下角的单独的一个元素an作为一个块阵,整个右上角的n-1阶矩阵作为一个块阵(它是一个对角矩阵)再答:
若A可逆正确:A^(-1)*A*=(AA^(-1))*=E*=E故A*^(-1)=A^(-1)*
楼上的讲法错误,不是正交矩阵A^{-1}=AA^2=I从相似标准型考察可以知道A可对角化,且特征值是1或-1,所以A具有如下形式A=P*D*P^{-1}其中D是以1和-1为对角元的矩阵.不难验证这个是
仅这些条件肯定是不够的,还需要A和B都是方阵,长方的就没招.因为K是分块下三角阵,K的逆必定也是分块下三角阵,直接设K^{-1}=X0YZ然后相乘一下与I比较即得X=A^{-1}Z=B^{-1}Y=B
不一定,所谓的初等矩阵是指由单位矩阵E经过一次初等变换得到的矩阵,共有三种类型:(1)P(i,j),表示单位矩阵E交换i行和j行的元素或者交换i行和j行的元素,它的逆矩阵是它本身,即P(i,j);(2
就是求λE-A的行列式的值令它等于0.4-λ0-104-λ-1(第三行加第一行的2-λ倍)=102-λ4-λ0-104-λ-11+(4-λ)(2-λ)00=(1+(4-λ)(2-λ))(0-(-(4-
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
|A^-1|=|A|^-1=1/|A|=1/3
楼上方法对,但写错了.aei+bfg+cdh-ceg-bdi-afh或(aei+bfg+cdh)-(ceg+bdi+afh)
是啊.共轭和转置是可以交换次序的.
我记得应该是特征向量正交和规范矩阵是充要关系.不一定是实对称.当然反过来是对的(谱分解定理)
(1)(A-E)(A+2E)/2=E,所以可逆,其逆就是(A-2E)/2(2)行互换,相当于A乘以初等矩阵,初等矩阵可逆,所以B可逆
必须是一个常数,因为这样是对应数相乘再相加,自然是一个常数如果反过来,一列乘一行,就是一个矩阵了————————————————————如果本题有什么不明白可以追问,
这个貌似很麻烦,而且可能存在错误.3×2和2×3的矩阵的秩最多只能为2,故这样的两个矩阵相乘的结果的秩最多只能为2.若A(原3×3矩阵)的秩也≤2,那么可以按下面步骤实现:【理论上讲任何一个方阵都可以
这与已知A求A^-1是一样的这是因为A=(A^-1)^-1A=abcd利用公式A^-1=(1/|A|)A*其中:|A|=ad-bcA*=d-b-ca注记忆方法:主对角线交换位置,次对角线变负号
答案是肯定的.设A为正交矩阵,则AA'=E,(A^2)(A^2)'=AAA'A'=A(AA')A'=AEA'=AA'=E,因此A^2仍是一个正交矩阵.再问:谢谢啦!再答:不用谢〜