3重积分对称性x^2 y^2 z^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:16:35
求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)

z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.z=6-2x^2-y^2也是椭

求用平面x+y+z=6与曲面x^2+y^2+z^2-xy-xz-yz=a^2相截所得的截断面之面积.重积分的题,

貌似数字6应该是字母b吧?由x+y+z=b得z=b-x-y,z对x,y的偏导数都是-1.所以截断面的面积A=∫∫(D)√(1+1+1)dxdy=√3×∫∫(D)dxdy,其中D是截断面在xoy面上的投

三重积分sin根号下(x^2+y^2+z^2)除以根号下(x^2+y^2+z^2)

注意ρ代表积分变量而R是积分限,所以在ρ的积分表达式中应该是关于ρ表达式而不是关于R的,所以最后一个ρ的积分应该是∫(sinρ/ρ)ρ^2dρ,积分限都是正确的.所以应该是∫dθ∫sinφdφ∫ρsi

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.

因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住

试证明(x+y-2z)+(y+z-2x)+(z+x-2y)=3(x+y-2z)(y+z-2x)(z+x-2y)

有这样的公式:a^3+b^3+c^2-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)左边减右边,证明:(x+y-2z)^3+(y+z-2x)^3+(z+x-2y)^3-3(x+y

曲面积分 (x^2+y^2)dS 积分区域是z=x^2+y^2以及平面z=1围成

∫∫Σ(x²+y²)dS=∫∫Σ1(x²+y²)dS+∫∫Σ2(x²+y²)dS=∫∫D(x²+y²)√(1+4x

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,

题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域

3元函数f(x,y,z)如何判断对称性,比如说:y方-z关于X的对称性如何判断

对称分为很多种,点对称,线对称,面对称,不知道你想知道什么?再问:面对称再答:三维空间的平面有无穷多个,你需要的是关于那一个面对称呢?再问:关于坐标轴的对称性再答:比如说函数关于x=0这个平面对称,则

求三重积分想[(y^2+x^2)z+3]在积分区域x^2+y^2+z^2

具体见图片,不过由于积分区域是关于xoy面对称的,而(y^2+x^2)z是关于z来说是奇函数,所以这部分的积分不用算就等于0了.

2重积分求体积计算x=0 y=0 x=1 y=1所围成的柱体被平面Z=0 2x+3y+z=6截得的体积?

投影到xoy平面,z上限是6-2x-3y,下限为0,xoy平面积分区域为1≥x≥01≥y≥0,所求为体积,被积函数即为1,则∫∫∫dv=∫∫dσxy∫(0~6-2x-3y)1*dz=∫(0~1)dx∫

计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y

原式=∫dθ∫rdr∫z³dz(作柱面坐标变换)=(2π)(1/4)∫[(√(1-r²))^4-(r-1)^4]rdr=(π/2)∫(4r^4-8r³+4r²)

微分方程(首次积分)已知dx/(e^x+z)=dy/(e^y+z)=dz/(z^2-e^(x+y)),求x,y,z的关系

由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx

【求解高数题需要过程(重积分)】求由抛物面z=x+2y与z=6-2x-y所围成的立体的体积

这里能做出这题的可能有点少再问:所以挂着先看看〒_〒再答:再问:赞!再答:不客气再问:和书后答案一样

曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面

楼上前一个积分算错了,这不是上半球面.我的答案:如有不懂,再问:您的问答我看懂了。不好意思,还有到类似的问题,不知道能否请您帮我解答下:曲面积分∫∫(y^2-x)dydz+(z^2-y)dzdx+(x

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域.

累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13

高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成

消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,

x/2=y/3=z/5 x+3y-z/x-3y+z

设x/2=y/3=z/5=ax=2ay=3az=5a是不是求的是:(x+3y-z)/(x-3y+z)?若是,如下:(x+3y-z)/(x-3y+z)=(2a+9a-5a)/(2a-9a+5a)=-3