四边形abcd内接于圆o点b为弧acd中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:41:08
如图,四边形ABCD内接于圆O,DA与CB的延长线相交于点P,且AD=CB,求证:AB‖CD.

∵四边形ABCD内接于圆O∴∠DCB+∠DAB=180°又∠PAD+∠DAB=180°∴∠PAD=∠DCB①∵DP//CA∴∠APD=∠BAC②又∠BAC=∠CDB③(等弧所对相等)由②③可得∠APD

四边形ABCD内接于圆O,AD平行BC,E是DA延长线上的一点,AB平方=AE*BC,BE与CA的延长线交于点F,求证B

角EAB=角ABC(平行)AB:BC=AE:AB所以三角形AEB与三角形BAC相似所以角ABE=角ACB所以ABE是弦切角即BE(BF)是切线

如图 内接于圆O的四边形ABCD的对角线AC与BD垂直相交于点K 设圆O 的半径为R 求证AK^2+BK^2+CK^2+

设圆心O到AC的距离为a圆心O到BD的距离为b则AK=√(R^2-a^2)+bCK=√(R^2-a^2)-bBK=√(R^2-b^2)+aDK=√(R^2-b^2)-aAK²+BK²

已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线

已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线于E点,角ABC+角DAB=135度,DC=√2厘米,求AE的长连接OD、OC、

已知四边形ABCD内接于圆O,且角A:角B=1:2,则角BOD=?

因为四边形ABCD内接于圆O,设钝角BOD为角1较大的角BOD为角2所以角1=2角A角2=2角C所以角1:角1=1:2而角1+角2=360°所以角BOD=120°

如图已知四边形ABCD内接于圆O AB//CD ,过点B作圆O的切线交DC的延长线于点E.求证:DA二次方=AB×EC

∵A、B、C、D共圆,∴∠BCE=∠BAD,又AB∥CD,∴AD=BC,∴∠ABD=∠BAC.∵BE切⊙O于B,∴∠CBE=∠BAC.由∠CBE=∠BAC、∠ABD=∠BAC,得:∠CBE=∠ABD,

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

已知四边形ABCD内接于圆O

对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于

已知四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分角BAD,求证△ABC相似于△BCE

∵AC平分∠BAD∴∠BAC=∠DAC∵∠DBC=∠DAC∴∠BAC=∠DBC又∵∠ACB=∠BCE∴⊿ABC∽⊿BEC

已知四边形ABCD内接于圆O,AC⊥BD,OE⊥CD于点E 求证:OE=AB/2

已知AC⊥BD,则∠CAD+∠ADB=90°,得∠COD+∠AOB=2∠CAD+2∠ADB=180°.作OF⊥AB垂足为F,连接OB、OC,则∠COE+∠BOF=1/2∠COD+1/2∠AOB=90°

已知四边形ABCD内接于圆O,AC⊥BD,OE⊥AB于点E

证明:作直径AG,连接BG,则BG⊥AB∵OE⊥AB于E,∴E是AB的中点∴OE=BG/2又AC⊥BD,BG⊥AB,∠ADP=∠BGA∴CD=BG∴OE=BG/2=CD/2证毕!

已知四边形ABCD内接于圆O,AC平分∠BAD,AB与DC的延长线交于点E,AC=CE.求AD=BE

证明:∠ABC+∠D=180°(圆内接四边形对角互补);∠ABC+∠EBC=180°(平角定义).∴∠EBC=∠D.(等式的性质)又AC平分∠BAD;AC=CE,则∠E=∠EAC=∠CAD.所以,⊿A

;四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB,DA交于P,过C点作PD的垂线交PD的延长线于

第一个问题:∵∠AOB、∠ACB分别是⊙O的圆心角、圆周角,∴∠AOB=2∠ACB.∵AB=AD,∴∠ACB=∠ACD,∴∠DCB=2∠ACB.由∠AOB=2∠ACB、∠DCB=2∠ACB,得:∠AO

四边形ABCD内接于圆o,角b等于50度,角ACD等于25度,角BAD为65度,那个圆中,AB通过点O,右边还有弦AD和

(1)∵在圆上,弦AD对应角∠ABD与∠ACD∴∠ABD=∠ACD=25°同理,∠CBD=∠CAD∵∠CBD=∠B-∠ABD=50°-25°=25°∴∠CAD=25°=∠ACD∴△DAC是等腰直角三角

四边形ABCD内接于圆O若∠BOD=100°则∠DAB

就是说一个四边形的四个定点到圆的圆心的距离相等切等于圆的半径圆心是O这个题有两个答案一个是圆心的四边形内答案是50度圆心在四边形外答案是230度所以答案为230或50度

四边形ABCD内接于圆o,AB,CD延长线交于点E,角AED的角平分线分别交BC,AD于点F

∠GFC=∠FEC+∠FCE,∠DGF=∠DAE+∠GEA,(三角形外角等于两不相邻内角之和)∠FEC=∠GEA,(EF平分∠AED)∠FCE=∠DAE,(圆内接四边形外角等于内对角)∠GFC=∠DG

已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,AC与BD交于点P.已知AB=BD,且CP=0.6,求四边形A

设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

已知四边形ABCD内接于直径为3的圆O,

如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等),  ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs

四边形abcd内接于⊙O,⊙O半径为2,ab=bc,∠a=75°,∠b=120°,求四边形周长

解题思路:构造直角三角形,运用三角形函数进行求解                      解题过程:解:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°,∠BAD+∠BCD=180°∵∠A